logo

SCIENCE CHINA Information Sciences, Volume 59, Issue 5: 052203(2016) https://doi.org/10.1007/s11432-015-5417-4

A Physarum-inspired approach to supply chain network design

More info
  • ReceivedMar 25, 2014
  • AcceptedJun 30, 2015
  • PublishedApr 12, 2016

Abstract

A supply chain is a system which moves products from a supplier to customers, which plays a very important role in all economic activities. This paper proposes a novel algorithm for a supply chain network design inspired by biological principles of nutrients' distribution in protoplasmic networks of slime mould Physarum polycephalum. The algorithm handles supply networks where capacity investments and product flows are decision variables, and the networks are required to satisfy product demands. Two features of the slime mould are adopted in our algorithm. The first is the continuity of flux during the iterative process, which is used in real-time updating of the costs associated with the supply links. The second feature is adaptivity. The supply chain can converge to an equilibrium state when costs are changed. Numerical examples are provided to illustrate the practicality and flexibility of the proposed method algorithm.


Acknowledgment

Acknowledgments

The work was partially supported by Chongqing Natural Science Foundation (Grant No. CSCT, 2010BA2003), national Natural Science Foundation of China (Grant Nos. 61174022, 61573290, 61503237), National High Technology Research and Development Program of China (863 Program) (Grant No. 2013AA013801), doctor Funding of Southwest University (Grant No. SWU110021), and Research Assistantship at Vanderbilt University.


References

[1] Liu Z, Nagurney A. Annals Oper Res, 2013, 208: 251-289 Google Scholar

[2] Zhang W, Xu D. Expert Syst Appl, 2014, 41: 168-175 Google Scholar

[3] Yu M, Nagurney A. Eur J Oper Res, 2013, 224: 273-282 Google Scholar

[4] Hu Z, Du X. Eng Optim, 2014, 46: 1389-1410 Google Scholar

[5] Ma H, Suo C. Int J Phys Distrib and Log Manag, 2006, 36: 127-135 Google Scholar

[6] Zhu X, Yao Q. Bioresource Tech, 2011, 102: 10936-10945 Google Scholar

[7] Santoso T, Ahmed S, Goetschalckx M, et al. Eur J Oper Res, 2005, 167: 96-115 Google Scholar

[8] Zhou G, Min H, Gen M. Comput Ind Eng, 2002, 43: 251-261 Google Scholar

[9] Trkman P, McCormack K. Int J Prod Econ, 2009, 119: 247-258 Google Scholar

[10] Altiparmak F, Gen M, Lin L, et al. Comput Ind Eng, 2009, 56: 521-537 Google Scholar

[11] Ahmadi J A, Azad N. Transport Res Part E: Log Transport Rev, 2010, 46: 582-597 Google Scholar

[12] Nagurney A. Transport Res Part E: Log Transport Rev, 2010, 46: 281-294 Google Scholar

[13] Bilgen B. Expert Syst Appl, 2010, 37: 4488-4495 Google Scholar

[14] Beamon B M. Int J Prod Econ, 1998, 55: 281-294 Google Scholar

[15] Sabri E H, Beamon B M. Omega, 2000, 28: 581-598 Google Scholar

[16] Handfield R B, Nichols E L. Supply Chain Redesign: Transforming Supply Chains into Integrated Value Systems. Upper Saddle River: FT Press, 2002. Google Scholar

[17] Nagurney A. Int J Prod Econ, 2010, 128: 200-208 Google Scholar

[18] Jiang W, Yang Y, Luo Y, et al. Int J Comput Commun Control, 2015, 10: 333-347 Google Scholar

[19] Deng Y. Appl Intell, 2015, 43: 530-543 Google Scholar

[20] Deng Y, Mahadevan S, Zhou D. Int J Unconv Comput, 2015, 3-4: 227-243 Google Scholar

[21] Jiang W, Luo Y, Qin X, et al. J Intell Fuzzy Syst, 2015, 28: 2343-2355 Google Scholar

[22] Deng X, Hu Y, Deng Y, et al. Expert Syst Appl, 2014, 41: 156-167 Google Scholar

[23] Deng Y, Chan F T. Expert Syst Appl, 2011, 38: 9854-9861 Google Scholar

[24] Deng Y, Chan F T, Wu Y, et al. Expert Syst Appl, 2011, 38: 6985-6993 Google Scholar

[25] Stephenson S L, Stempen H, Hall I. Myxomycetes: a Handbook of Slime Molds. Portland: Timber Press, 1994. Google Scholar

[26] Nakagaki T, Yamada H, Tóth Á. Nature, 2000, 407-6993 Google Scholar

[27] Zhang X, Zhang Z, Zhang Y, et al. Saf Sci, 2013, 54: 87-91 Google Scholar

[28] Zhang X, Zhang Y, Hu Y, et al. Expert Syst Appl, 2013, 40: 7607-7616 Google Scholar

[29] Zhang X, Wang Q, Chan F T S, et al. Int J Unconv Comput, 2014, 10: 143-162 Google Scholar

[30] Tero A, Kobayashi R, Nakagaki T. Phys A, 2006, 363: 115-119 Google Scholar

[31] Zhang X, Huang S, Hu Y, et al. Appl Math Comput, 2013, 219: 9959-9970 Google Scholar

[32] Zhang X, Wang Q, Adamatzky A, et al. A biologically inspired optimization algorithm for solving fuzzy shortest path problems with mixed fuzzy arc lengths. J Optimiz Theory Appl, in press. doi: 10.1007/s10957-014-0542-6. Google Scholar

[33] Zhang Y, Zhang Z, Deng Y, et al. Appl Soft Comput, 2013, 13: 2356-2363 Google Scholar

[34] Zhang X, Liu Q, Hu Y, et al. An adaptive amoeba algorithm for shortest path tree computation in dynamic graphs. arXiv: 1311.0460. 2013. Google Scholar

[35] Gunji YP, Shirakawa T, Niizato T, et al. J Theor Biol, 2011, 272: 187-200 Google Scholar

[36] Shirakawa T, Shirakawa Gunji, Y P. Int J Unconv Comput, 2010, 6: 79-88 Google Scholar

[37] Shirakawa T, Gunji Y P. Biophys Chem, 2007, 128: 253-260 Google Scholar

[38] Gao C, Lan X, Zhang X, et al. PloS one, 2013, 8: :-e66732 Google Scholar

[39] Nakagaki T, Iima M, Ueda T, et al. Phys Rev Lett, 2007, 99: :-068104 Google Scholar

[40] Adamatzky A. IEEE Trans Cybernetics, 2014, 44: 126-136 Google Scholar

[41] Tero A, Yumiki K, Kobayashi R, et al. Theory Biosci, 2008, 127: 89-94 Google Scholar

[42] Jones J, Adamatzky A. Natural Comput, 2014, 13: 1-16 Google Scholar

[43] Tero A, Takagi S, Saigusa T, et al. Science, 2010, 327: 439-442 Google Scholar

[44] Adamatzky A, Alonso-Sanz R. Biosyst, 2011, 105: 89-100 Google Scholar

[45] Adamatzky A. Bioevaluation of World Transport Networks. Singapore: World Scientific, 2012. Google Scholar

[46] Adamatzky A, Mart\'\inez G J, Chapa-Vergara S V, et al. Natural Comput, 2011, 10: 1195-1214 Google Scholar

[47] Gao C, Yan C, Zhang Z, et al. Phys A, 2014, 398: 179-186 Google Scholar

[48] Adamatzky A, Martinez G J. J Bionic Eng, 2013, 10: 242-250 Google Scholar

[49] Adamatzky A. Physarum Machines: Computers from Slime Mould. Singapore: World Scientific, 2010. Google Scholar

[50] Adamatzky A, Schubert T. Mater Today, 2014, 17: 86-91 Google Scholar

[51] Nagurney A. Transport Res Part E: Log Transport Rev, 2009, 45: 1-15 Google Scholar

[52] Nagurney A, Woolley T, Qiang Q. Int Trans Oper Res, 2010, 17: 333-349 Google Scholar

[53] Nagurney A. Supply Chain Network Economics: Dynamics of Prices, Flows and Profits. Cheltenham: Edward Elgar Publishing, 2006. Google Scholar

[54] Nagurney A, Dong J, Zhang D, et al. Transport Res Part E: Log Transport Rev, 2002, 38: 281-303 Google Scholar

[55] Nagurney A, Woolley T. Environmental and cost synergy in supply chain network integration in mergers and acquisitions. In: Multiple Criteria Decision Making for Sustainable Energy and Transportation Systems. Berlin: Springer, 2010. 57-78. Google Scholar

[56] Tero A, Kobayashi R, Nakagaki T. J Theor Biol, 2007, 244: 553-564 Google Scholar

[57] Bell M G, Lida Y. Transportation Network Analysis. Hoboken: John Wiley & Sons, 1997. Google Scholar

[58] Si BF, Gao ZY. Modeling Network Flow and System Optimization for Traffic and Transportation System (in Chinese). Beijing: China Communications Press, 2013. Google Scholar

[59] Adamatzky A. Phys Lett A, 2009, 373: 952-956 Google Scholar

[60] Gunji Y P, Shirakawa T, Niizato T, et al. J Theor Biol, 2008, 253: 659-667 Google Scholar

[61] Gunji Y P, Shirakawa T, Niizato T, et al. J Theor Biol, 2011, 272: 187-200 Google Scholar

[62] Tsompanas M A I, Sirakoulis G C. Bioinspir Biomim, 2012, 7: 036013-200 Google Scholar

[63] Tsompanas M A I, Sirakoulis G C, Adamatzky A. Evolving transport networks with cellular automata models inspired by slime mould. IEEE Trans Cybern, in press. doi: 10.1109/TCYB.2014.2361731. Google Scholar

[64] Kalogeiton V S, Papadopoulos D P, Sirakoulis G C. Hey Physarum! Can you perform SLAM? Int J Unconv Comput, 2014, 10: 271-293. Google Scholar

[65] Adamatzky A, Jones J. Int J of Bifurcat Chaos, 2010, 20: 3065-3084 Google Scholar

[66] Chakravarthy H, Proch P B, Rajan R, et al. Netw Complex Syst, 2012, 2: 14-22 Google Scholar

[67] Liu Y, Zhang Z, Gao C, et al. A physarum network evolution model based on IBTM. In: Advances in Swarm Intelligence. Berlin: Springer, 2013. 19-26. Google Scholar

Copyright 2019 Science China Press Co., Ltd. 《中国科学》杂志社有限责任公司 版权所有

京ICP备18024590号-1