SCIENCE CHINA Information Sciences, Volume 59 , Issue 1 : 010201(2016) https://doi.org/10.1007/s11432-015-5442-3

Leader-following adaptive consensus of multiple uncertain rigid spacecraft systems

He CAI 1,2, Jie HUANG 1,2,*
More info
  • ReceivedApr 12, 2015
  • AcceptedJul 17, 2015
  • PublishedNov 23, 2015


The existing results on the leader-following attitude consensus for multiple rigid spacecraft systems assume that all the parameters of the spacecraft systems are known exactly and the information flow among the followers is bidirectional. In this paper, we remove these two assumptions. First, by introducing a new Lyapunov function, we allow the communication network to be directed. Second, we convert the leader-following consensus problem into an adaptive stabilization problem of a well defined error system. Then, under the standard assumption that the state of the leader system can reach every follower through a directed path, we further show that this stabilization problem is solvable by a distributed adaptive control law. Moreover, we also present the sufficient condition for guaranteeing the convergence of the estimated parameters to the unknown actual parameters.



This work has been supported in part by National Natural Science Foundation of China (Grant No. 61174049) and Research Grants council of the Hong Kong Special Administration Region (Grant No. 412813).


[1] Bai H, Arcak M, Wen J T. Automatica, 2008, 44: 3170-3175 CrossRef Google Scholar

[2] Cai H, Huang J. Automatica, 2014, 50: 1109-1115 CrossRef Google Scholar

[3] Dimarogonas D V, Tsiotras P, Kyriakopoulos K J. Syst Control Lett, 2009, 58: 429-435 CrossRef Google Scholar

[4] Ren W. J Guid Control Dyn, 2007, 30: 633-638 CrossRef Google Scholar

[5] Scharf D P, Hadaegh F Y, Ploen S R. A survey of spacecraft formation flying guidance and control (part II): control. In: Proceedings of the American Control Conference, Boston, 2004. 2976--2985. Google Scholar

[6] VanDyke M C, Hall C D. J Guid Control Dyn, 2006, 29: 1101-1109 CrossRef Google Scholar

[7] Wang N, Zhang T W, Xu J Q. Sci China Inf Sci, 2011, 54: 469-481 CrossRef Google Scholar

[8] Chen Z, Huang J. IEEE Trans Autom Control, 2009, 54: 600-605 CrossRef Google Scholar

[9] Yuan J S C. IEEE J Robotic Autom, 1988, 4: 434-440 CrossRef Google Scholar

[10] Ahmed J, Coppola V T, Bernstein D. J Guid Control Dyn, 1998, 21: 684-691 CrossRef Google Scholar

[11] Liu L, Chen Z, Huang J. Automatica, 2009, 45: 1306-1311 CrossRef Google Scholar

[12] Boyd S, Sastry S. Syst Control Lett, 1983, 3: 311-319 CrossRef Google Scholar

[13] Lasalle J P. Asymptotic stability criteria. In: Proceedings of Symposia in Applied Mathematics, Providence, 1962. 13: 299--307. Google Scholar

[14] Godsil C, Royal G. Algebraic Graph Theory. New York: Springer-Verlag, 2001. 163--164, 279--281. Google Scholar

[15] Horn R, Johnson C. Topics in Matrix Analysis. Cambridge: Cambridge University Press, 1991. 113--114. Google Scholar

[16] Su Y, Huang J. IEEE Trans Autom Control, 2012, 57: 1062-1066 CrossRef Google Scholar

[17] Lewis F L, Jagannathan S, Yesildirek A. Neural Network Control of Robot Manipulators and Nonlinear Systems. Philadelphia: Taylor and Francis Inc, 1998. 112. Google Scholar

[18] Khalil H K. Nonlinear Systems. 3rd ed. Upper Saddle River: Prentice Hall, 2002. 102--103. Google Scholar

Copyright 2020 Science China Press Co., Ltd. 《中国科学》杂志社有限责任公司 版权所有

京ICP备17057255号       京公网安备11010102003388号