logo

SCIENCE CHINA Information Sciences, Volume 59, Issue 4: 042409(2016) https://doi.org/10.1007/s11432-015-5453-0

A 256x256 time-of-flight image sensor based on center-tap demodulation pixel structure

More info
  • ReceivedJul 21, 2015
  • AcceptedAug 25, 2015
  • PublishedFeb 25, 2016

Abstract

This paper proposes a 256 $\times$ 256 time-of-flight (TOF) image sensor based on the center-tap (CT) demodulation pixel structure. The image sensor can capture both the two-dimensional (2D) high speed image and the three-dimensional (3D) depth image. The CT pixel consists of two split pinned photodiode (PPD) regions and two pairs of transfer transistors. The transfer transistors adopt a non-uniform doped channel (NUDC) structure, which can increase the electron transfer speed along the transfer channel and eliminate the image lag for high speed imaging. The pixel size is 10 $\upmu$m $\times$ 10 $\upmu$m, and we design the implementation process of the pixel to increase the electron transfer speed. The sensor is fabricated in a 0.18 $\upmu$m 1P5M CMOS image sensor process. Test results show that it can capture the 430-fps intensity image and the 90-fps depth image in two different imaging modes. The rectified non-linearity within the 1.0--7.5 m depth measurement range achieves less than 3 cm, and the measurement accuracy achieves 4.0 cm at 2.5 m, corresponding to the relative error of 1.6\%.


Funded by

Special Funds for Major State Basic Research of China(2011CB932902)

National Natural Science Foundation of China(61434004)

National Natural Science Foundation of China(61234003)

National Natural Science Foundation of China(61504141)


References

[1] Zhang W C, Fu Q Y, Wu N J. IEEE J Solid-State Circ, 2011, 46: 2132-2147 CrossRef Google Scholar

[2] Zhou Y F, Cao Z X, Qin Q, et al. Sci China Inf Sci, 2014, 57: 042405-2147 Google Scholar

[3] Shi C, Yang J, Wu N J, et al. Sci China Inf Sci, 2014, 57: 062406-2147 Google Scholar

[4] Choi J, Park S, Cho J, et al. 4-$upmu$W object-adaptive CMOS image sensor with embedded feature extraction algorithm for motion-triggered object-of-interest imaging. IEEE J Solid-State Circ, 2014, 49: 289-300 Google Scholar

[5] Shi C, Yang J, Han Y, et al. IEEE J Solid-State Circ, 2014, 49: 2067-2082 CrossRef Google Scholar

[6] Foix S, Alenya G, Torras C. IEEE Sensors J, 2011, 11: 1917-1926 CrossRef Google Scholar

[7] Remondino F, Stoppa D. TOF Range-Imaging Cameras. Berlin: Springer, 2013. Google Scholar

[8] Spirig T, Seitz P, Vietze O, et al. IEEE J Quantum Electron, 1995, 31: 1705-1708 CrossRef Google Scholar

[9] Stoppa D, Massari N, Pancheri L, et al. 18-$upmu$m CMOS imaging technology. IEEE J Solid-State Circ, 2011, 46: 248-258 CrossRef Google Scholar

[10] Pancheri L, Massari N, Perenzoni M, et al. A QVGA-range image sensor based on buried-channel demodulator pixels in 0.18$\upmu$m CMOS with extended dynamic range. In: Proceedings of IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC), San Francisco, 2012. 394--396. Google Scholar

[11] Lee T Y, Lee Y J, Min D K, et al. IEEE Trans Electron Devices, 2014, 61: 870-877 CrossRef Google Scholar

[12] Kim S J, Kim J D K, Kang B, et al. IEEE J Solid-State Circ, 2012, 47: 2834-2845 CrossRef Google Scholar

[13] Kim S J, Kang B, Kim J D K, et al. A 1920$\times$1080 3.65$\upmu$m-pixel 2D/3D image sensor with split and binning pixel structure in 0.11$\upmu$m standard CMOS. In: Proceedings of IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC), San Francisco, 2012. 396--398. Google Scholar

[14] Kim W, Yibing W, Ovsiannikov I, et al. A 1.5Mpixel RGBZ CMOS image sensor for simultaneous color and range image capture. In: Proceedings of IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC), San Francisco, 2012. 392--394. Google Scholar

[15] Li Z, Kawahito S, Yasutomi K, et al. IEEE Trans Electron Devices, 2012, 59: 2715-2722 CrossRef Google Scholar

[16] Cao Z X, Zhou Y F, Li Q L, et al. Design of pixel for high speed CMOS image sensors. In: Proceedings of International Image Sensor Workshop, Snowbird, 2013. 229--232. Google Scholar

[17] Cao Z X, Li Q L, Han Y, et al. J Semiconduct, 2014, 35: 114010-2722 CrossRef Google Scholar

[18] Chen Z, Di S, Shi C, et al. J Semiconduct, 2014, 35: 105007-2722 CrossRef Google Scholar

Copyright 2019 Science China Press Co., Ltd. 《中国科学》杂志社有限责任公司 版权所有

京ICP备18024590号-1