SCIENCE CHINA Information Sciences, Volume 59, Issue 6: 062307(2016) https://doi.org/10.1007/s11432-015-5478-4

Model-based target decomposition with \\the $\bf\pi/4$ mode compact polarimetry data}{Model-based target decomposition with the $\pi/4$ mode compact polarimetry data

More info
  • ReceivedMay 27, 2015
  • AcceptedAug 26, 2015
  • PublishedApr 13, 2016


In this paper, model-based (surface, dihedral and volume scattering) target decomposition technique is proposed to decompose the $\pi/4$ mode compact polarimetric radar data. A general relationship between fully polarimetric coherence matrix and the Stokes vector of the $\pi/4$ mode compact polarimetric data is first established. Based on the Stokes vector, a proposed algorithm to retrieve the power of three scattering mechanisms is given in details. We validate this algorithm with L-band AIRSAR, San Francisco Bay, and results of decomposition are discussed and assessed in detail by being compared with the quad-pol Freeman-Durden decomposition results. Finally, the $\pi/4$ mode decomposition is compared with the CTLR (circular transmitting and linear reeving) mode, and with the $\pi/4$ mode $m-\delta$ targets decomposition. The comparison results are analyzed and discussed in detail.


[1] Chen L. Investigation on models and methods of compact polarimetric SAR information processing. Dissertation for Ph.D. Degree. Beijing: Institute of Electronics, Chinese Academy of Sciences, 2013. 2--3. Google Scholar

[2] Souyris J C, Imbo P, Fjortoft R, et al. IEEE Trans Geosci Rem Sens, 2005, 43: 634-646 Google Scholar

[3] Raney R. IEEE Trans Geosci Rem Sens, 2007, 45: 3397-3404 Google Scholar

[4] Collins M J, Denbina M, Atteia G. IEEE Trans Geosci Rem Sens, 2013, 51: 591-600 Google Scholar

[5] Nord M, Ainsworth T, Lee J S, et al. IEEE Trans Geosci Rem Sens, 2009, 47: 174-188 Google Scholar

[6] Li H Y, Perrie W, He Y J, et al. IEEE Trans Geosci Rem Sens, 2013, 51: 3299-3305 Google Scholar

[7] Charbonneau F J, Brisco B, Raney R K, et al. Compact polarimetry overview and applications assessment. Can J Rem Sens, 2010, 36, 298--315. Google Scholar

[8] Ballester-Berman J D, Lopez-Sanchez J M. Analysis on the potential of L-band polsar data for crop monitoring. In: Proceedings of ESA Internal Workshop on POLInSAR, Frascati, 2011. Google Scholar

[9] Lee J S, Poitter E. Polarimetric Radar Imaging: From Basics to Applications. Boca Raton: CRC Press, Taylor & Francis Group, 2009. 49--51. Google Scholar

[10] Raney R. IEEE Trans Geosci Rem Sens, 2006, 3: 317-319 Google Scholar

[11] Freeman A, Durden S. IEEE Trans Geosci Rem Sens, 1998, 36: :-973 Google Scholar

[12] Cloude S, Pottier E. IEEE Trans Geosci Rem Sens, 1996, 34: 498-518 Google Scholar

[13] Liu T, Huang G M, Wang X S, et al. Sci China Inf Sci, 2010, 53: 355-366 Google Scholar

[14] Cloude S. Polarisation: Applications in Remote Sensing. London: Oxford Univ Press, 2009, 142--158. Google Scholar

[15] Cloude S, Goodenough D, Chen H. IEEE Geosci Rem Sens Lett, 2012, 9: 28-32 Google Scholar

[16] López-Mart\'{\i}nez C, Alonso-González A. IEEE Trans Geosci Rem Sens, 2014, 52: 3091-3106 Google Scholar

[17] Huynen J R. Stokes matrix parameters and their interpretation in terms of physical target properties. In: Proceedings of International Society for Optics and Photonics, Orlando, 1990. 195--207. Google Scholar

Copyright 2020 Science China Press Co., Ltd. 《中国科学》杂志社有限责任公司 版权所有

京ICP备18024590号-1       京公网安备11010102003388号