SCIENCE CHINA Information Sciences, Volume 59, Issue 8: 082308(2016) https://doi.org/10.1007/s11432-015-5491-7

Imaging and structural feature decomposition of a complex target using multi-aspect polarimetric scattering

More info
  • ReceivedAug 17, 2015
  • AcceptedSep 25, 2015
  • PublishedMay 3, 2016


Based on the Huynen parametric decomposition of target scattering matrix, the polarimetric ellipse parameters are transformed and applied to decomposition of scattering mechanisms of a complex target in VHR POL-SAR images (very high resolution, polarimetric synthetic aperture radar). Making use of multi-aspect (or circle-aspect) and wideband VHR POL-SAR images, scattering mechanisms of a volumetric target and its structural components are recognized over image pixels. Utilizing the layover features, the target height profile is also estimated from two-dimensional image. As example, polarimetric scattering data of some vehicles on ground, including multi-aspect simulated data and experimental measurements, are applied to validations of scattering mechanism decompositions and target structural feature recognition.

Funded by

National Natural Science Foundation of China(61471127)



This work was supported by National Natural Science Foundation of China (Grant No. 61471127), and Shanghai Yangpu Ding-Yuan Foundation.


[1] Rihaczek A W, Hershkowitz S J. Radar Resolution and Complex-Image Analysis. Norwood: Artech House, 1996. Google Scholar

[2] Lee J-S, Pottier E. Polarimetric Radar Imaging: From Basics to Applications. BocaRaton: CRC Press, 2009. Google Scholar

[3] Cloude S R, Pottier E. An entropy based classification scheme for land applications of polarimetric SAR. IEEE Trans Geosci Remote Sens, 1997, 35: 68-78 CrossRef Google Scholar

[4] Xu J Y, Yang J, Peng Y N. A new approach to dual-band polarimetric radar remote sensing image classification. Sci China Ser F-Inf Sci, 2005, 48: 747-760 CrossRef Google Scholar

[5] Huynen J R. Phenomenological theory of radar targets. Dissertation for the Ph.D. Degree. Delft: University of Technology, 1970. Google Scholar

[6] Huynen J R. Phenomenological Theory of Radar Targets, Electromagnetic Scattering. New York: Academic Press, 1978. Google Scholar

[7] Krogager E. New decomposition of the radar target scattering matrix. Electron Lett, 1990, 26: 1525-1527 CrossRef Google Scholar

[8] Cameron W L, Leung L K. Feature motivated polarization scattering matrix decomposition. In: Proceedings of IEEE International Radar Conference, Arlington, 1990. 549--557. Google Scholar

[9] Cameron W L, Youssef N N, Leung L K. Simulated polarimetric signatures of primitive geometrical shapes. IEEE Trans Geosci Remote Sens, 1996, 34: 793-803 CrossRef Google Scholar

[10] Knott E F, Shaeffer J F, Tuley M T. Radar Cross Sections. 2nd ed. Raleigh: SciTech Publishing, 2004. Google Scholar

[11] Keller J B. Geometrical theory of diffraction. J Opt Soc America, 1962, 52: 116-130 CrossRef Google Scholar

[12] Potter L C, Moses R L. Attributed scattering centers for SAR ATR. IEEE Trans Image Process, 1997, 6: 79-91 CrossRef Google Scholar

[13] Gerry M J, Potter L C, Gupta I J, et al. A parametric model for synthetic aperture radar measurements. IEEE Trans Anten Propaga, 1999: 47, 1179--1188. Google Scholar

[14] Richards J A, Willsky A S, Fisher J W. Expectation-maximization approach to target model generation from multiple synthetic aperture radar images. Optical Eng, 2002, 41: 150-166 CrossRef Google Scholar

[15] Jackson J A, Moses R L. Feature extraction algorithm for 3D scene modeling and visualization using monostatic SAR. Proc SPIE Algorithms for Synthetic Aperture Radar Imagery XIII, 2006, 6237. Google Scholar

[16] Jackson J A, Rigling B D, Moses R L. Canonical scattering feature models for 3D and bistatic SAR. IEEE Trans Aeros Electr Syst, 2010, 46: 525-541 CrossRef Google Scholar

[17] Jin Y-Q, Xu F. Polarimetric Scattering and SAR Information Retrieval. Hoboken: Wiley-IEEE Press, 2013. Google Scholar

[18] Baird C, Kersey W T, Giles R, et al. Classification of targets using optimized ISAR Euler imagery. Proc SPIE Radar Sensor Technology X, 2006, 6210: 11-541 Google Scholar

[19] Baird C, Giles R, Nixon W. Development and assessment of a complete ATR algorithm based on ISAR Euler imagery. Proc SPIE Radar Sensor Technology XI, 2007, 6547. Google Scholar

[20] Dallmann T, Heberling D. Discrimination of scattering mechanisms via polarimetric rcs imaging. IEEE Anten Propaga Maga, 2014, 56: 154-165 Google Scholar

[21] Ertin E, Austin C D, Sharma S, et al. GOTCHA experience report: three-dimensional SAR imaging with complete circular apertures. Proc SPIE Algorithms for Synthetic Aperture Radar Imagery XIV, 2007, 6568: 12-165 Google Scholar

[22] Jakowatz C V, Wahl D E, Eichel P H, et al. Spotlight-Mode Synthetic Aperture Radar: a Signal Processing Approach. Boston: Kluwer Academic Publishers, 1996. Google Scholar

[23] Knaell K, Cardillo G. Radar tomography for the generation of three-dimensional images. IEEE Proc Radar Sonar Navi, 1995, 142: 54-60 CrossRef Google Scholar

[24] Gorham L A, Moore L J. SAR image formation toolbox for MATLAB. Proc SPIE Algorithms for Synthetic Aperture Radar Imagery XVII, 2010, 7699: 223-263 Google Scholar

[25] Jin Y Q, Lou L. Terrain topographic inversion using single-pass polarimetric SAR image data. Sci China Ser F-Inf Sci, 2004, 47: 490-500 CrossRef Google Scholar

[26] Wang B, Wang Y P, Hong W, et al. Studies on MB-SAR 3D imaging algorithm using Yule-Walker method. Sci China Inf Sci, 2010, 53: 1848-1859 CrossRef Google Scholar

[27] Zhou J X, Shi Z G, Fu Q. Three-dimensional scattering center extraction based on wide aperture data at a single elevation. IEEE Trans Geosci Remote Sens, 2015, 53: 1638-1655 CrossRef Google Scholar

[28] Palm S, Oriot H M, Cantalloube H M. Radargrammetric DEM extraction over urban area using circular SAR imagery. IEEE Trans Geosci Remote Sens, 2012, 50: 4720-4725 CrossRef Google Scholar

[29] Dai E, Jin Y-Q, Hamasaki T, et al. Three-dimensional stereo reconstruction of buildings using polarimetric SAR images acquired in opposite directions. IEEE Geosci Remote Sens Lett, 2008, 5: 236-240 CrossRef Google Scholar

[30] Dungan K E, Austin C, Nehrbass J, et al. Civilian vehicle radar data domes. Proc SPIE Algorithms for Synthetic Aperture Radar Imagery XVII, 2010, 7699: 731-739 Google Scholar

[31] Casteel Jr C H, Gorham L A, Minardi M J, et al. A challenge problem for 2D/3D imaging of targets from a volumetric data set in an urban environment. Proc SPIE Algorithms for Synthetic Aperture Radar Imagery XIV, 2007, 6568: 7-739 Google Scholar

Copyright 2020 Science China Press Co., Ltd. 《中国科学》杂志社有限责任公司 版权所有

京ICP备18024590号-1       京公网安备11010102003388号