logo

SCIENCE CHINA Information Sciences, Volume 59, Issue 2: 022308(2016) https://doi.org/10.1007/s11432-015-5502-8

5G green cellular networks considering power allocation schemes

More info
  • ReceivedAug 22, 2015
  • AcceptedNov 23, 2015
  • PublishedDec 22, 2015

Abstract

There is no abstract available for this article.


Funded by

uK EPSRC(EP/J015180/1)

hubei Provincial Science and Technology Department(2013BHE005)

National Natural Science Foundation of China(61271224)

eU H2020 5G Wireless Project(641985)

of China(2015FDG12580)

Joint Research Program of China(61210002)

ministry of Science and Technology(MOST)

EU FP7 QUICK Project(PIRSES-GA-2013-612652)

Project Acronym CROWN(610524)

eU FP7-PEOPLE-IRSES Project Acronym wiNDOW(318992)

major International(Regional)


Acknowledgment

Acknowledgments

This work was supported by National Natural Science Foundation of China (Grant No. 61271224), major International (Regional) Joint Research Program of China (Grant No. 61210002), ministry of Science and Technology (MOST) of China (Grant No. 2015FDG12580), hubei Provincial Science and Technology Department (Grant No. 2013BHE005), EU FP7 QUICK Project (Grant No. PIRSES-GA-2013-612652), eU H2020 5G Wireless Project (Grant No. 641985), eU FP7-PEOPLE-IRSES, Project Acronym wiNDOW (Grant No. 318992), and Project Acronym CROWN (Grant No. 610524), uK EPSRC (Grant No. EP/J015180/1). ms. Peipei Song was involved in some initial discussions for this paper and we thank her useful suggestions on this paper.


References

[1] Cisco. Cisco visual networking index: global mobile data traffic forecast update, 2013-2018. http: //www.cisco.com/ c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white paper c11-520862.html. 2014. Google Scholar

[2] Chen T, Kim H, Yang Y. Energy efficiency metrics for green wireless communications. In: Proceedings of 2010 International Conference on Wireless Communications and Signal Processing (WCSP), Suzhou, 2010. 1--6. Google Scholar

[3] Alfano G, Chong Z, Jorswieck E. Energy-efficient power control for MIMO channels with partial and full CSI. In: Proceedings of International ITG Workshop on Smart Antennas, Dresden, 2012. 332--337. Google Scholar

[4] Liu L, Miao G, Zhang J. Energy-efficient scheduling for downlink multi-user MIMO. In: Proceedings of IEEE International Conference on Communications (ICC), Ottawa, 2012. 4394. Google Scholar

[5] Jiang J, Dianati M, Imran M A, et al. IEEE Trans Veh Tech, 2014, 63: 2272-2283 CrossRef Google Scholar

[6] Chen L, Yang Y, Chen X, et al. IEEE Trans Veh Tech, 2013, 62: 1577-1585 CrossRef Google Scholar

[7] Jiang C, Cimini L J. IEEE Trans Wirel Commun, 2013, 12: 2988-2999 CrossRef Google Scholar

[8] Jiang C, Cimini L J. IEEE Wirel Commun Lett, 2012, 1: 577-580 CrossRef Google Scholar

[9] Garcia V, Chen C S, Lebedev N, et al. Self-optimized precoding and power control in cellular networks. In: Proceedings of IEEE 22nd International Symposium on Personal Indoor and Mobile Radio Communications, Toronto, 2011. 81--85. Google Scholar

[10] Chong Z, Jorswieck E. Energy-efficient power control for MIMO time-varying channels. In: Proceedings of IEEE Online Conference on Green Communications (GreenCom), New York, 2011. 92--97. Google Scholar

[11] Joung J, Sun S. IEEE Commun Lett, 2013, 17: 1766-1769 CrossRef Google Scholar

[12] Davaslioglu K, Ayanoglu E. IEEE Commun Surv Tut, 2014, 16: 2065-2091 CrossRef Google Scholar

[13] Hasan Z, Boostanimehr H, Bhargava V K. IEEE Commun Surv Tut, 2011, 13: 524-540 CrossRef Google Scholar

[14] Zou Y, Zhu J, Zhang R. IEEE Trans Commun, 2013, 61: 999-1010 CrossRef Google Scholar

[15] Han T, Ansari N. IEEE Wirel Commun, 2013, 20: 82-89 Google Scholar

[16] Li C, Zhang J, Letaief K. IEEE Trans Wirel Commun, 2014, 13: 2505-2517 CrossRef Google Scholar

[17] Nguyen T M, Shin H, Quek T Q S. Network throughput and energy efficiency in MIMO femtocells. In: Proceedings of 18th European Wireless Conference, Poznan, 2012. 1--5. Google Scholar

[18] Soh Y S, Quek T Q S, Kountouris M, et al. IEEE J Sel Area Commun, 2013, 31: 840-850 CrossRef Google Scholar

[19] Karray M K. Spectral and energy efficiencies of OFDMA wireless cellular networks. In: Proceedings of IFIP Wireless Days, Venice, 2010. 1--5. Google Scholar

[20] Xiang L, Ge X, Wang C X, et al. IEEE Trans Wirel Commun, 2013, 12: 961-973 CrossRef Google Scholar

[21] Chen M, Zhang Y, Li Y, et al. IEEE Netw, 2015, 29: 32-38 Google Scholar

[22] Chen M, Hao Y, Li Y, et al. IEEE Commun, 2015, 53: 18-24 Google Scholar

[23] Chen M, Zhang Y, Hu L, et al. ACM/Springer Mobile Netw Appl, 2015, 20: 704-712 CrossRef Google Scholar

[24] Wang C-X, Haider F, Gao X, et al. IEEE Commun Mag, 2014, 52: 122-130 Google Scholar

[25] Yang X, Petropulu A P. IEEE Trans Signal Process, 2003, 51: 64-76 CrossRef Google Scholar

[26] Ferenc J S, Neda Z. Phys A: Stat Mech Appl, 2007, 385: 518-526 CrossRef Google Scholar

[27] Stoyan D, Kendall W S. Stochastic Geometry and Its Applications. 2nd ed. Hoboken: Wiley, 1996. Google Scholar

[28] Al-Ahmadi S, Yanikomeroglu H. On the approximation of the generalized-K PDF by a Gamma PDF using the moment matching method. In: Proceedings of IEEE Wireless Communications and Networking Conference, Budapest, 2009. 1--6. Google Scholar

[29] Kostic I M. IEEE Proc Commun, 2005, 152: 821-827 CrossRef Google Scholar

[30] Bithas P S, Sagias N C, Mathiopoulos P T, et al. IEEE Commun Lett, 2006, 10: 353-355 CrossRef Google Scholar

[31] Simon M K, Alouini M S. Digital Communication over Fading Channels: a Unified Approach to Performance Analysis. Hoboken: Wiley, 2000. Google Scholar

[32] Dai L, Wang Z, Yang Z. IEEE J Sel Area Commun, 2012, 30: 695-707 CrossRef Google Scholar

[33] Annapureddy V S, Veeravalli V V. IEEE Trans Inf Theory, 2011, 57: 2565-2581 CrossRef Google Scholar

[34] Win M Z, Pinto P C, Shepp L. Proc IEEE, 2009, 97: 205-230 CrossRef Google Scholar

[35] Ge X, Huang K, Wang C X, et al. IEEE Trans Wirel Commun, 2011, 10: 3298-3309 CrossRef Google Scholar

[36] Alouini M S, Goldsmith A J. IEEE Trans Veh Tech, 1999, 48: 1047-1066 CrossRef Google Scholar

[37] Abdi A, Kaveh M. Electron Lett, 1998, 34: 851-852 CrossRef Google Scholar

[38] Gradshteyn I S, Ryzhik I M. Table of Integrals, Series, and Products. New York: Academic Press, 2007. Google Scholar

[39] Chong Z, Jorswieck E. Mobile Lightweight Wirel Syst, 2012, 81: 18-29 CrossRef Google Scholar

[40] Arnold O, Richter F, Fettweis G, et al. Power consumption modeling of different base station types in heterogeneous cellular networks. In: Proceedings of IEEE Future Network and Mobile Summit, Florence, 2010. 1--8. Google Scholar

[41] Yu H, Zhong L, Sabharwal A. IEEE Trans Very Large Scale Integration (VLSI) Syst, 2012, 20: 1175-1186 CrossRef Google Scholar

[42] Silva A P, Mateus G R. Performance analysis for data service in third generation mobile telecommunication networks. In: Proceedings of 35th Annual IEEE Simulation Symposium, San Deigo, 2002. 227--234. Google Scholar

[43] Dighe P, Mallik R K, Jamuar S S. IEEE Trans Commun, 2003, 51: 694-703 CrossRef Google Scholar

[44] Khoshnevisan M, Laneman J N. IEEE Trans Commun, 2012, 60: 3855-3864 CrossRef Google Scholar

[45] Lu Y, Zhang W. Water-filling capacity analysis in large MIMO systems. In: Proceeding of IEEE Computing, Communications and IT Applications Conference (ComComAp), Hong Kong, 2013. 186--190. Google Scholar

[46] Xu J, Qiu L. IEEE Trans Wirel Commun, 2013, 12: 690-701 CrossRef Google Scholar

[47] Hong X, Jie Y, Wang C-X, et al, Energy-spectral efficiency trade-off in virtual MIMO cellular systems. IEEE J Sel Area Commun, 2013, 31: 2128--2140. Google Scholar

[48] Chen R, Andrews J G, Jr Heath R W, et al. IEEE Trans Wirel Commun, 2007, 6: 2700-2711 CrossRef Google Scholar

Copyright 2019 Science China Press Co., Ltd. 《中国科学》杂志社有限责任公司 版权所有

京ICP备18024590号-1