SCIENCE CHINA Information Sciences, Volume 59, Issue 1: 010204(2016) https://doi.org/10.1007/s11432-015-5508-2

Design of evacuation strategies with crowd density feedback

More info
  • ReceivedOct 28, 2015
  • AcceptedDec 3, 2015
  • PublishedDec 21, 2015


A second-order stochastic model describing a large scale crowd is formulated, and an efficient evacuation strategy for agents in complex surroundings is proposed and solved numerically. The method consists in reshaping the crowd contour by making use of the crowd density feedback that is commonly available from geolocation technologies, and Kantorovich distance is used to transport the current shape into the desired one. The availability of the crowd density enables to solve the otherwise challenging forward-backward problem. Using this approach, we demonstrate via numerical results that the crowd migrates through the complex environment as designed.

Funded by

Swedish Council of Research(VR)



This work was supported by Swedish Council of Research (VR).


[1] Parrish J, Hammer W. Animal Groups in Three Dimensions. Cambridge: Cambridge University Press, 1997. Google Scholar

[2] Balch T, Arkin R C. IEEE Trans Robot Automat, 1998, 14: 926-939 CrossRef Google Scholar

[3] Helbing D, Farkas I, Vicsek T. Nature, 2000, 407: 487-490 CrossRef Google Scholar

[4] Wang J, Zhang L, Shi Q, et al. Phys A, 2015, 428: 396-409 CrossRef Google Scholar

[5] Twarogowska M, Goatin P, Duvigneau R. Appl Math Model, 2014, 38: 5781-5795 CrossRef Google Scholar

[6] Zheng Y, Jia B, Li X, et al. Phys A, 2011, 390: 3147-3156 CrossRef Google Scholar

[7] Ajzen I. Organ Behav Hum Decision Process, 1991, 50: 179-211 CrossRef Google Scholar

[8] Sime J D. Saf Sci, 1995, 21: 1-14 CrossRef Google Scholar

[9] Reynolds C W. Comput Graph, 1987, 21: 25-34 CrossRef Google Scholar

[10] Helbing D, Molnar P. Phys Rev E, 1995, 51: 4282-4286 CrossRef Google Scholar

[11] Gazi V, Passino K M. IEEE Trans Automat Contr, 2003, 48: 692-697 CrossRef Google Scholar

[12] Yang Y, Dimarogonas D V, Hu X. Automatica, 2014, 50: 622-627 CrossRef Google Scholar

[13] Huang M, Caines P E, Malhame R P. IEEE Trans Automat Contr, 2007, 52: 1560-1571 CrossRef Google Scholar

[14] Lasry J, Lions P. Jpn J Math, 2007, 2: 229-260 CrossRef Google Scholar

[15] Voorhees P W. J Statist Phys, 1985, 38: 231-252 CrossRef Google Scholar

[16] Lachapelle A, Wolfram M. Transp Res Part B, 2011, 45: 1572-1589 CrossRef Google Scholar

[17] Yang Y, Dimarogonas D V, Hu X. Shaping up crowd of agents through controlling their statistical moments. arXiv:1410.6355 [math.OC]. Google Scholar

[18] Elad M, Milanfar R, Golub G H. IEEE Trans Signal Process, 2004, 52: 1814-1829 CrossRef Google Scholar

[19] Yu Y-C. Sci China Inf Sci, 2014, 57: 032102-1829 Google Scholar

[20] Reif J H, Wang H. Robot Auton Syst, 1999, 27: 171-194 CrossRef Google Scholar

[21] Lin Y K, Cai G Q. Probability Structural Dynamic: Advanced Theory and Applications. New York: McGraw-Hill, 2004. Google Scholar

[22] Fleming W H, Soner H M. Controlled Markov Process and Viscosity Solutions. New Yourk: Springer, 2006. Google Scholar

[23] Yong J M, Zhou X Y. Stochastic Control, Hamiltonian Systems and HJB Equations. New York: Springer-Verlag, 1999. Google Scholar

[24] Qi L, Cai G Q, Xu W. Probabilistic Eng Mech, 2014, 38: 35-41 CrossRef Google Scholar

[25] Kantorovich L. Manag Sci, 1958, 5: 1-4 CrossRef Google Scholar

[26] Werman M, Peleg S, Rosenfeld A. Comput Vis Graph Image Process, 1985, 32: 328-336 CrossRef Google Scholar

[27] Kaijse T. J Math Imaging Vision, 1998, 9: 173-191 CrossRef Google Scholar

[28] Brandt J, Cabrelli C, Molter U. Inf Process Lett, 1991, 40: 113-117 CrossRef Google Scholar

[29] Deng Y, Du W. Electron Notes Theor Comput Sci, 2009, 253: 73-82 Google Scholar

[30] Murty K. Linear and Combinatorial Programming. New York: Wiley, 1976. Google Scholar

[31] Gustavi T. Control and coordination of mobile multi-agent systems. Dissertation for the Doctoral Degree. Optimization and Systems Theory, Department of Mathematics, KTH, 2009. Google Scholar

Copyright 2020 Science China Press Co., Ltd. 《中国科学》杂志社有限责任公司 版权所有

京ICP备18024590号-1       京公网安备11010102003388号