SCIENCE CHINA Information Sciences, Volume 59, Issue 2: 022302(2016) https://doi.org/10.1007/s11432-015-5509-1

Impact of RF mismatches on the performance of massive MIMO systems with ZF precoding

More info
  • ReceivedJul 28, 2015
  • AcceptedNov 24, 2015
  • PublishedJan 4, 2016


Thanks to the channel reciprocity, the time division duplex (TDD) operation is more preferred in massive multiple-input multiple-output (MIMO) systems. Avoiding the heavy feedback of downlink channel state information (CSI) from the user equipment (UE) to the base station (BS), the uplink CSI can be exploited for the downlink precoding. However, due to the mismatches of the radio frequency (RF) circuits at both sides of the link, the whole communication channels are usually not symmetric in practical systems. This paper is focused on the RF mismatches at the UEs and the BS for the multi-user massive MIMO systems with zero forcing (ZF) precoding. The closed-form expressions of the ergodic sum-rates are derived for evaluating the impact of RF mismatches on the system performance. Theoretical analysis and simulation results show that the RF mismatches at the UEs only lead to a negligible performance loss. However, it is imperative to perform reciprocity calibration at the BS, because the RF mismatches at the BS contribute to the inter-user interference (IUI) and result in a severe system performance degradation.


[1] Zhu H L. IEEE J Sel Area Commun, 2011, 29: 1151-1163 CrossRef Google Scholar

[2] Rusek F, Persson D, Lau B K, et al. IEEE Signal Process Mag, 2013, 30: 40-60 Google Scholar

[3] Erik L, Edfors O, Tufvesson F, et al. IEEE Commun Mag, 2014, 2: 186-195 Google Scholar

[4] Ma Z, Zhang Z, Ding Z, et al. Sci China Inf Sci, 2015, 58: 041301-195 Google Scholar

[5] Zhu H L, Wang J Z. IEEE Trans Wirel Commun, 2009, 57: 2734-2744 CrossRef Google Scholar

[6] Zhu H L, Wang J Z. IEEE Trans Wirel Commun, 2012, 60: 499-509 CrossRef Google Scholar

[7] Zhu H L. IEEE J Sel Area Commun, 2012, 30: 748-759 CrossRef Google Scholar

[8] Huh H, Caire Giuseppe, Papadopoulos H C, et al. IEEE Trans Wirel Commun, 2011, 11: 3226-3239 Google Scholar

[9] Smith G S. IEEE Trans Antenn Propag, 2004, 52: 1568-1577 CrossRef Google Scholar

[10] Hong Y, Marzetta T L. IEEE J Sel Area Commun, 2013, 31: 172-179 CrossRef Google Scholar

[11] Bourdoux A. Non-reciprocal transceivers in OFDM/SDMA systems: impact and mitigation. In: Proceedings of IEEE Radio and Wireless Conference (RAWCON 03), Boston, 2003. 183--186. Google Scholar

[12] Kaltenberger F. Relative channel reciprocity calibration in MIMO/TDD systems. In: Proceedings of IEEE Future Network and Mobile Summit, Florence, 2010. 1--10. Google Scholar

[13] Huang F, Wang Y F, Yang J, et al. IET Commun, 2012, 6: 289-299 CrossRef Google Scholar

[14] Wei H. ICD reciprocity calibration for distributed large-scale MIMO systems with BD precoding. In: Proceedings of IEEE International Conference on Communications in China (ICCC), Shenzhen, 2015. 1--5. Google Scholar

[15] Huawei. Hardware calibration requirement for dual layer beamforming. In: 3GPP TSG RAN WG1 Meeting \#57, R1-092359, Los Angeles, 2009. 1--10. Google Scholar

[16] Ericsson. On the need for UE calibration for enhanced downlink transmission. In: 3GPP TSG RAN WG1 Meeting \#57, R1-092016, San Francisco, 2009. 1--4. Google Scholar

[17] Alcatel-Lucent. Channel reciprocity modeling and performance evaluation. In: 3GPP TSG RAN WG1 Meeting \#59, R1-100426, Jeju, 2010. 1--10. Google Scholar

[18] Wang D M, Wang J Z, You X H, et al. IEEE J Sel Area Commun, 2013, 31: 2112-2127 CrossRef Google Scholar

[19] Wang J Z, Zhu H L, Gomes N. IEEE J Sel Area Commun, 2012, 30: 675-683 CrossRef Google Scholar

[20] Geng J. Antenna gain mismatch calibration for cooperative base stations. In: Proceedings of IEEE Vehicular Technology Conference (VTC-Fall), San Francisco, 2011. 1--5. Google Scholar

[21] Maiwald D, Kraus D. IEE Proc-Radar Sonar Navig, 2000, 147: 162-168 CrossRef Google Scholar

[22] Zhang Q T, Cui X W, Li X M. IEEE Trans Wirel Commun, 2005, 4: 681-688 CrossRef Google Scholar

[23] Xing C W, Ma S D, Zhou Y Q. IEEE Trans Signal Process, 2015, 63: 334-348 CrossRef Google Scholar

[24] Shepard C. Argos: practical many-antenna base stations. In: Proceedings of the 18th Annual International Conference on Mobile Computing and Networking, Istanbul, 2012. 53--64. Google Scholar

[25] Wei H, Wang D M, Zhu H L, et al. IEEE Trans Wirel Commun, 2015, doi: 10-348 Google Scholar

Copyright 2020 Science China Press Co., Ltd. 《中国科学》杂志社有限责任公司 版权所有

京ICP备18024590号-1       京公网安备11010102003388号