logo

SCIENCE CHINA Information Sciences, Volume 60, Issue 3: 032501(2017) https://doi.org/10.1007/s11432-016-0152-4

Qubit-wise teleportation and its application in public-key secret communication

Chenmiao WU1,2,3, Li YANG1,2,*
More info
  • ReceivedApr 25, 2016
  • AcceptedAug 24, 2016
  • PublishedDec 9, 2016

Abstract

We propose a quantum public-key encryption (QPKE) protocol for an unknown multi-qubit state based on qubit-wise teleportation. The private-key is a computational Boolean function, whereas the public-key is a pair of a random bit string and a quantum state. A private-key corresponds to an exponential number of public-keys. Security analysis showed that the proposed protocol has information-theoretic security from attacks for the private-key and the encryption. A multi-partite quantum secret state sharing protocol is presented based on the proposed multi-qubit-oriented QPKE protocol. Such secret state sharing protocol is information-theoretically secure.


Funded by

National Natural Science Foundation of China(61672517)

National Natural Science Foundation of China(61173157)


Acknowledgment

Acknowledgments

This work was supported by National Natural Science Foundation of China (Grant Nos. 61173157, 61672517).


References

[1] Zukowski M, Zeilinger A, Horne M A, et al. \lq\lq Event-ready-detectors\rq\rq Bell experiment via entanglement swapping. Phys Rev Lett, 1993, 71: 4287-4290 CrossRef Google Scholar

[2] Pan J W, Bouwmeester D, Weinfurter H, et al. Experimental entanglement swapping: entangling photons that never interacted. Phys Rev Lett, 1998, 80: 3891-3894 CrossRef Google Scholar

[3] Huelga S F, Vaccaro J A, Chefles A, et al. Quantum remote control: teleportation of unitary operations. Phys Rev A, 2001, 63: 042303-3894 CrossRef Google Scholar

[4] Sheng Y B, Deng F G, Long G L. Complete hyperentangled-Bell-state analysis for quantum communication. Phys Rev A, 2010, 82: 032318-3894 CrossRef Google Scholar

[5] Wang X L, Cai X D, Su Z E, et al. Quantum teleportation of multiple degrees of freedom of a single photon. Nature, 2015, 518: 516-519 CrossRef Google Scholar

[6] Li T C, Yin Z Q. Quantum superpositon, entanglement, and state teleportation of a microorganism on an electromechanical oscillator. Sci Bull, 2016, 61: 163-171 CrossRef Google Scholar

[7] Uhlmann A. Anti-(conjugate) linearity. Sci China-Phys Mech Astron, 2016, 59: 630301-171 CrossRef Google Scholar

[8] Yan F L, Yang L G. Ecomomical teleprotation of multiparticle quantum state. Nuovo Cimento Soc Ital Fis B, 2003, 118: 79-82 Google Scholar

[9] Zheng Y Z, Gu Y J, Wu G C, et al. Teleportation of a multiqubit state by an entangled qubit channel. Chinese Phys, 2003, 12: 1070-1075 CrossRef Google Scholar

[10] Pan J W, Daniell M, Gasparoni S, et al. Experimental demonstration of four-photon entanglement and high-fidelity teleportation. Phys Rev Lett, 2001, 86: 4435-1075 CrossRef Google Scholar

[11] Zhang Z J, Man Z X. Many-agent controlled teleportation of multi-qubit quantum information. Phys Lett A, 2005, 341: 55-59 CrossRef Google Scholar

[12] Zhang Z J, Liu Y M, Man Z X. Many-agent controlled teleportation of multi-qubit quantum information via quantum entanglement swapping. Commun Theory Phys, 2005, 44: 847-59 CrossRef Google Scholar

[13] Yang C P, Chu S I, Han S. Efficient many-party controlled teleportation of multiqubit quantum information via entanglement. Phys A, 2004, 70: 022329-59 Google Scholar

[14] Jie Y. Multi-agent controlled teleportation of multi-qubit quantum information via two-step protocol. Chinese Phys, 2005, 14: 2149-2152 CrossRef Google Scholar

[15] Wu Y L, Li S J, Ge W, et al. Generation of polarization-entangled photon pairs in a cold atomic ensemble. Sci Bull, 2016, 61: 302-306 CrossRef Google Scholar

[16] Cao D Y, Liu B H, Wang Z, et al. Multiuser-to-multiuser entanglement distribution based on 1550 nm polarization-entangled photons. Sci Bull, 2015, 60: 1128-1132 CrossRef Google Scholar

[17] Ren$\acute{e}$ H, Markus G, Stenfan N, et al. A novel integrated quantum circuit for high-order W-state generation and its highly precise characterization. Sci Bull, 2015, 60: 96-100 CrossRef Google Scholar

[18] Li F, Bao W, Fu X. A quantum algorithm for the dihedral hidden subgroup problem based on lattice basis reduction algorithm. Chinese Sci Bull, 2014, 59: 2552-2557 CrossRef Google Scholar

[19] Grover L K. Quantum mechanics helps in searching for a needle in haystack. Phys Rev Lett, 1997, 79: 325-328 CrossRef Google Scholar

[20] Shor P W. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J Comput, 1997, 26: 1484-1509 CrossRef Google Scholar

[21] Wu W Q, Zhang H G, Wang H Z, et al. A public key cryptosystem based on data complexity under quantum environment. Sci China Inf Sci, 2015, 58: 110102-1509 Google Scholar

[22] Okamoto T, Tanaka K, Uchiyama S. Quantum public-key cryptosystems. In: Proceedings of the 20th Annual International Cryptology Conference on Advances in Cryptology. London: Springer-Verlag, 2000. 147--165. Google Scholar

[23] Gottesman D. Quantum public key cryptography with information-theoretic security. In: Proceedings of Workshop on Classical and Quantum Information Security, California, 2005. 15--18. Google Scholar

[24] Kawachi A, Koshiba T, Nishimura H, et al. Computational indistinguishability between quantum states and its cryptographic application. In: Proceedings of the 24th Annual International Conference on Theory and Applications of Cryptographic Techniques. Berlin: Springer-Verlag, 2005. 268--284. Google Scholar

[25] Yang L. Quantum public-key cryptosystem based on classical NP-complete problem. arXiv:quant-ph/0310076. Google Scholar

[26] Fujita H. Quantum McEliece public-key cryptosystem. Quantum Inf Comput, 2012, 12: 181-202 Google Scholar

[27] Deng F G, Li X H, Li C Y, et al. Multiparty quantum secret splitting and quantum state sharing. Phys Lett A, 2006, 354: 190-195 CrossRef Google Scholar

[28] Hillery M, Bu$\breve{\rm z}$ek V, Berthiaume A. Quantum secret sharing. Phys Rev A, 1999, 59: 1829-195 CrossRef Google Scholar

[29] Karlsson A, Koashi M, Imoto N. Quantum entanglement for secret sharing and secret splitting. Phys Rev A, 1999, 59: 162-195 CrossRef Google Scholar

[30] Deng F G, Long G L, Zhou H Y. An efficient quantum secret sharing scheme with Einstein\textrm{-}Podolsky\textrm{-}Rosen pairs. Phys Lett A, 2005, 340: 43-50 CrossRef Google Scholar

[31] Xiao L, Long G L, Deng F G, et al. Efficient multiparty quantum-secret-sharing schemes. Phys Rev A, 2004, 69: 052307-50 CrossRef Google Scholar

[32] Karimipour V, Bahraminasab A, Bagherinezhad S. Entanglement swapping of generalized cat states and secret sharing. Phys Rev A, 2002, 65: 042320-50 CrossRef Google Scholar

[33] Cleve R, Gottesman D, Lo H K. How to share a quantum secret. Phys Rev Lett, 1999, 83: 648-50 CrossRef Google Scholar

[34] Lance A M, Symul T, Bowen W P, et al. Tripartite quantum state sharing. Phys Rev Lett, 2004, 92: 177903-50 CrossRef Google Scholar

[35] Yang Y G, Wen Q Y. Threshold quantum secret sharing between multi-party and multi-party. Sci China Ser G-Phys Mech Astron, 2008, 51: 1308-1315 CrossRef Google Scholar

[36] Yang Y G, Wen Q Y. Circular threshold quantum secret sharing. Chinese Phys B, 2008, 17: 419-1315 CrossRef Google Scholar

[37] Long G L, Liu X S. Theoretically efficient high-capacity quantum-key-distribution scheme. Phys Rev A, 2002, 65: 032302-1315 CrossRef Google Scholar

[38] Bostr$\ddot{o}$m K, Felbinger T. Deterministic secure direct communication using entanglement. Phys Rev Lett, 2002, 89: 187902-1315 CrossRef Google Scholar

[39] Deng F G, Long G L. Secure direct communication with a quantum one-time pad. Phys Rev A, 2004, 69: 52319-1315 CrossRef Google Scholar

[40] Hoffmann H, Bostroem K, Felbinger T. Comment on Secure direct communication with a quantum one-time pad. Phys Rev A, 2005, 72: 16301-1315 CrossRef Google Scholar

[41] Yan F L, Zhang X Q. A scheme for secure direct communication using EPR pairs and teleportation. Eur Phys J B, 2004, 41: 75-78 CrossRef Google Scholar

[42] Yang L, Yang B Y, Xiang C. Quantum public-key encryption schemes based on conjugate coding. arXiv:1112.0421. Google Scholar

[43] Liang M, Yang L. Public-key encryption and authentication of quantum information. Sci China Ser G-Phys Mech Astron, 2012, 55: 1618-1629 CrossRef Google Scholar

[44] Yang C P, Guo G C. Multiparticle generalization of teleportation. Chinese Phys Lett, 2000, 17: 162-1629 CrossRef Google Scholar

[45] Ikram M, Zhu S Y, Zubairy M S. Quantum teleportation of an entangled state. Phys Rev A, 2000, 62: 022307-1629 CrossRef Google Scholar

[46] Lee J, Min H, Oh S D. Multipartite entanglement for entanglement teleportation. Phys Rev A, 2002, 66: 052318-1629 CrossRef Google Scholar

[47] Rigolin G. Quantum teleportation of an arbitrary two-qubit state and its relation to multipartite entanglement. Phys Rev A, 2005, 71: 032303-1629 CrossRef Google Scholar

[48] Yang L, Xiang C, Li B. Qubit-string-based bit commitment protocols with physical security. arXiv:1011.5099. Google Scholar

[49] Boykin P O, Roychowdhury V. Optimal encryption of quantum bits. Phys Rev A, 2003, 67: 042317-1629 CrossRef Google Scholar

[50] Boykin P O. Information security and quantum mechanics: security of quantum protocols. Dissertation for Ph.D. Degree. Los Angeles: University of California, 2002. Google Scholar

[51] Ambainis A, Mosca M, Tapp A, et al. Private quantum channels. In: Proceedings of IEEE 54th Symposium on Foundations of Computer Science. Washington: IEEE Computer Society, 2000. 547. Google Scholar

Copyright 2019 Science China Press Co., Ltd. 《中国科学》杂志社有限责任公司 版权所有

京ICP备18024590号-1