SCIENCE CHINA Information Sciences, Volume 59, Issue 12: 122902(2016) https://doi.org/10.1007/s11432-016-0582-y

Quaternion-based robust trajectory tracking control for uncertain quadrotors

More info
  • ReceivedAug 30, 2016
  • AcceptedSep 28, 2016
  • PublishedNov 2, 2016


This paper presents a robust nonlinear controller design approach for uncertain quadrotors to implement trajectory tracking missions. The quaternion representation is applied to describe the rotational dynamics in order to avoid the singularity problem existing in the Euler angle representation. A nonlinear robust controller is proposed, which consists of an attitude controller to stabilize the rotational motions and a position controller to control translational motions. The quadrotor dynamics involves uncertainties such as parameter uncertainties, nonlinearities, and external disturbances and their effects on closed-loop control system can be guaranteed to be restrained. Simulation results on the quadrotor demonstrate the effectiveness of the designed control approach.

Funded by

National High-Tech R&D Program of China(863 Program)


National Natural Science Foundation of China(61503012)



This work was supported by National High-Tech R&D Program of China (863 Program) (Grant No. 2012AA112201) and National Natural Science Foundation of China (Grant No. 61503012).


[1] Hoffmann G M, Huang H, Waslander S L. Precision flight control for a multi-vehicle quadrotor helicopter testbed. Control Eng Pract, 2011, 19: 1023-1036 CrossRef Google Scholar

[2] Sun C H, Duan H B. Markov decision evolutionary game theoretic learning for cooperative sensing of unmanned aerial vehicles. Sci China Technol Sci, 2015, 58: 1392-1400 CrossRef Google Scholar

[3] Tang S, Yang Q H, Qian S K, et al. Height and attitude active disturbance rejection controller design of a small-scale helicopter. Sci China Inf Sci, 2015, 58: 032202-1400 Google Scholar

[4] Alexis K, Nikolakopoulos G, Tzes A. Switching model predictive attitude control for a quadrotor helicopter subject to atmosphere disturbances. Control Eng Pract, 2011, 10: 1195-1207 Google Scholar

[5] Pounds P, Mahony R, Corke P. Modelling and control of a large quadrotor robot. Control Eng Pract, 2010, 18: 691-699 CrossRef Google Scholar

[6] Mahony R, Kumar V, Corke P. Multirotor aerial vehicles: modeling, estimation, and control of quadrotor. IEEE Robot Automat Mag, 2012, 19: 20-32 Google Scholar

[7] Castillo P, Dzul A, Lozano R. Real-time stabilization and tracking of a four-rotor mini rotorcraft. IEEE Trans Control Syst Technol, 2004, 12: 510-516 CrossRef Google Scholar

[8] Aguilar-Ibanez C, Sira-Ramirez H, Suarez-Castanon S, et al. The trajectory tracking problem for an unmanned four-rotor system: flatness-based approach. Int J Control, 2012, 85: 69-77 CrossRef Google Scholar

[9] Bertrand S, Guenard N, Hamel T, et al. A hierarchical controller for miniature VTOL UAVs: design and stability analysis using singular perturbation theory. Control Eng Pract, 2011, 19: 1099-1108 CrossRef Google Scholar

[10] Besnard L, Shtessel Y B, Landrum B. Quadrotor vehicle control via sliding mode controller driven by sliding mode disturbance observer. J Franklin Inst, 2012, 349: 658-684 CrossRef Google Scholar

[11] Luque-Vega L, Castillo-Toledo B, Loukianov A G. Robust block second order sliding mode control for a quadrotor. J Franklin Inst, 2012, 349: 719-739 CrossRef Google Scholar

[12] Dydek Z T, Annaswamy A M, Lavretsky E. Adaptive control of quadrotor UAVs: a design trade study with flight evaluations. IEEE Trans Control Syst Technol, 2013, 21: 1400-1406 CrossRef Google Scholar

[13] Zuo Z Y. Trajectory tracking control design with command-filtered compensation for a quadrotor. IET Control Theory Appl, 2010, 11: 2343-2355 Google Scholar

[14] Ryan T, Kim H J. LMI-based gain synthesis for simple robust quadrotor control. IEEE Trans Automat Sci Eng, 2013, 10: 1173-1178 CrossRef Google Scholar

[15] Liu H, Li D J, Xi J X, et al. Robust attitude controller design for miniature quadrotors. Int J Robust Nonlinear Control, 2016, 26: 681-696 CrossRef Google Scholar

[16] Liu H, Lu G, Zhong Y S. Robust LQR attitude control of a 3-DOF lab helicopter for aggressive maneuvers. IEEE Trans Ind Electron, 2013, 60: 4627-4636 CrossRef Google Scholar

[17] Tayebi A, McGilvray S. Attitude stabilization of a VTOL quadrotor aircraft. IEEE Trans Control Syst Technol, 2006, 14: 562-571 CrossRef Google Scholar

[18] Johnson E N, Kannan S K. Adaptive trajectory control for autonomous helicopters. J Guid Control Dyn, 2005, 28: 524-538 CrossRef Google Scholar

[19] Zhang R, Quan Q, Cai K Y. Attitude control of a quadrotor aircraft subject to a class of time-varying disturbances. IET Control Theory Appl, 2011, 5: 1140-1146 CrossRef Google Scholar

[20] Isidori A, Marconi L, Serrani A. Robust nonlinear motion control of a helicopter. IEEE Trans Automat Control, 2003, 48: 413-426 CrossRef Google Scholar

[21] Guerrero-Castellanos J F, Marchand N, Hably A, et al. Bounded attitude control of rigid bodies: real-time experimentation to a quadrotor mini-helicopter. Control Eng Pract, 2011, 19: 790-797 CrossRef Google Scholar

[22] Li K B, Chen L, Tang G L. Algebraic solution of differential geometric guidance command and time delay control. Scie China Technol Sci, 2015, 58: 565-573 CrossRef Google Scholar

[23] Guo S P, Li D X, Meng Y H, et al. Task space control of free-floating space robots using constrained adaptive RBF-NTSM. Sci China Technol Sci, 2014, 57: 828-837 CrossRef Google Scholar

[24] Shen Y Y, Wang Y Q, Liu M L, et al. Acquisition algorithm assisted by AGC control voltage for DSSS signals. Sci China Technolog Sci, 2015, 58: 2195-2206 CrossRef Google Scholar

[25] Wang H X, Wang W Y, Zheng Y H. Bifurcation analysis for Hindmarsh-Rose neuronal model with time-delayed feedback control and application to chaos control. Sci China Technol Sci, 2014, 57: 872-878 CrossRef Google Scholar

[26] Derafa L, Benallegue A, Fridman L. Super twisting control algorithm for the attitude tracking of a four rotors UAV. J Franklin Inst, 2012, 349: 685-699 CrossRef Google Scholar

[27] Xu R, Ozguner U. Sliding mode control of a class of underactuated systems. Automatica, 2008, 44: 233-241 CrossRef Google Scholar

[28] Zhao B, Xian B, Zhang Y, et al. Nonlinear robust sliding mode control of a quadrotor unmanned aerial vehicle based on immersion and invariance method. Int J Robust Nonlinear Control, 2015, 18: 3714-3731 Google Scholar

[29] Liu H, Li D J, Zuo Z Y, et al. Robust three-loop trajectory tracking control for quadrotors with multiple uncertainties. IEEE Trans Ind Electron, 2016, 63: 2263-2274 Google Scholar

[30] Liu H, Wang X F, Zhong Y S. Quaternion-based robust attitude control for uncertain robotic quadrotors. IEEE Trans Ind Inform, 2015, 11: 406-415 CrossRef Google Scholar

[31] Liu H, Zhao W B, Zuo Z Y, et al. Robust control for quadrotors with multiple time-varying uncertainties and delays. IEEE Trans Ind Electron, 2016, doi: 10-415 Google Scholar

[32] Stevens B L, Lewis F L. Aircraft Control and Simulation. New Jersey: John Wiley & Sons, Inc., 2003. Google Scholar

Copyright 2020 Science China Press Co., Ltd. 《中国科学》杂志社有限责任公司 版权所有

京ICP备18024590号-1       京公网安备11010102003388号