logo

SCIENCE CHINA Information Sciences, Volume 59, Issue 4: 042414(2016) https://doi.org/10.1007/s11432-016-5537-5

Tailoring electromagnetically induced transparency effect of terahertz metamaterials on ultrathin substrate

More info
  • ReceivedNov 4, 2015
  • AcceptedDec 18, 2015
  • PublishedFeb 25, 2016

Abstract

Electromagnetically induced transparency (EIT) is a fascinating phenomenon in optical physics and has been employed in slow light technology. In this work, we use terahertz (THz) metamaterials to mimic EIT phenomenon and study their spectral dependence on the coupling strength between bright and dark resonators. In these metamaterials, two kinds of resonators are located on two different layers separated by a 10-$\upmu$m-thick polyimide (PI) film. The whole sample is supported by a 5-$\upmu$m-thick flexible PI film, so the Fabry-Perot resonance at THz can be avoided. The coupling strength is tuned by the translational offset of symmetry axes between two different kinds of resonators, resulting in the change of EIT-like spectra.


Funded by

National Natural Science Foundation of china(61071009)

National Natural Science Foundation of china(61027008)

National Basic Research Program of China(2014CB339800)

National Natural Science Foundation of china(61007034)

National Natural Science Foundation of china(60990322)

Key Programs of Natural Science Foundation of Higher Education Institution of Anhui Province Priority Academic program Development of Jiangsu Higher Education Institutions(PAPD)

National Basic Research Program of China(Grant nos. 2011CBA00107)


References

[1] arris S E. Phys Today, 1997, 50: 36-42 Google Scholar

[2] leischhauer M, Imamoglu A, Marangos J P. Rev Mod Phys, 2005, 77: 633-673 CrossRef Google Scholar

[3] in X G, Feng T H, Yip S P, et al. Appl Phys Lett, 2013, 103: 021115-673 CrossRef Google Scholar

[4] ing H H, Zhu Z H, Zhang X Q, et al. Sci China Inf Sci, 2013, 56: 120406-673 Google Scholar

[5] iu X J, Han J G, Zhang W L, et al. Appl Phys Lett, 2012, 100: 131101-673 CrossRef Google Scholar

[6] au L V, Harris S E, Dutton Z, et al. Nature, 1999, 397: 594-598 CrossRef Google Scholar

[7] iu C, Dutton Z, Behroozi C H, et al. Nature, 2001, 409: 490-493 CrossRef Google Scholar

[8] ajcsy M, Zibrov A S, Lukin M D. Nature, 2003, 426: 638-641 CrossRef Google Scholar

[9] hillips D F, Fleischhauer A, Mair A, et al. Phys Rev Lett, 2001, 86: 783-786 CrossRef Google Scholar

[10] oyd R W, Gauthier D J. Nature, 2006, 441: 701-702 CrossRef Google Scholar

[11] igelow M S, Lepeshkin N N, Boyd R W. Science, 2003, 301: 200-202 CrossRef Google Scholar

[12] u Q F, Sandhu S, Povinelli M L, et al. Phys Rev Lett, 2006, 96: 123901-202 CrossRef Google Scholar

[13] afavi-Naeini A H, Chan J, Eichenfield M, et al. Nature, 2011, 472: 69-73 CrossRef Google Scholar

[14] hang S, Genov D A, Wang Y, et al. Phys Rev Lett, 2008, 101: 047401-73 CrossRef Google Scholar

[15] ingh R, Rochstuhl C, Lederer Falk, et al. Phys Rev B, 2009, 79: 085111-73 CrossRef Google Scholar

[16] heludev N I, Kivshar Y S. Nat Mater, 2012, 11: 917-924 CrossRef Google Scholar

[17] iu Y M, Zhang X. Chem Soc Rev, 2011, 40: 2494-2507 CrossRef Google Scholar

[18] ao H, Padilla W J, Zhang X, et al. IEEE J Sel Top Quan Elect, 2011, 17: 92-101 CrossRef Google Scholar

[19] hang L, Tassin P, Koschny T, et al. Appl Phys Lett, 2010, 97: 241904-101 CrossRef Google Scholar

[20] howdhury D R, Singh R, Taylor A J, et al. Appl Phys Lett, 2013, 102: 011122-101 CrossRef Google Scholar

[21] ingh R, Al-Naib I A I, Koch M, et al. Appl Phys Lett, 2011, 99: 201107-101 CrossRef Google Scholar

[22] u J Q, Singh R, Liu X J, et al. Nat Comm, 2012, 3: 1151-101 CrossRef Google Scholar

[23] u J B, Wan J, Liang L J, et al. Appl Phys Lett, 2011, 99: 161113-101 CrossRef Google Scholar

[24] in B B, Wu J B, Zhang C H, et al. Supercond Sci Tech, 2013, 26: 074004-101 CrossRef Google Scholar

[25] e Y R, Zhou H, Jin Y, et al. Appl Phys Lett, 2011, 99: 043113-101 CrossRef Google Scholar

[26] eng F Y, Wu Q, Erni D, et al. IEEE T Microw Theory, 2012, 60: 3013-3022 CrossRef Google Scholar

[27] hu L, Meng F Y, Fu J H, et al. J Phys D Appl Phys, 2012, 45: 445105-3022 CrossRef Google Scholar

[28] hu L, Meng F Y, Wu Q, et al. Opt Express, 2012, 20: 4494-4502 CrossRef Google Scholar

[29] Li H M, Liu S B, Liu S Y, et al. Electromagnetically induced transparency with large group index induced by simultaneously exciting the electric and the magnetic resonance. Appl Phys Lett, 2014 105: 133514. Google Scholar

[30] an W, Sun Y, Wang Z G, et al. Appl Phys Lett, 2014, 104: 091107-4502 CrossRef Google Scholar

[31] i H M, Liu S B, Liu S Y, et al. Appl Phys Lett, 2015, 106: 083511-4502 CrossRef Google Scholar

[32] i H M, Liu S B, Liu S Y, et al. Appl Phys Lett, 2015, 106: 114101-4502 CrossRef Google Scholar

[33] assin P, Zhang L, Economou E N, et al. Phys Rev Lett, 2009, 102: 053901-4502 CrossRef Google Scholar

[34] assin P, Zhang L, Zhao R, et al. Phys Rev Lett, 2012, 109: 187401-4502 CrossRef Google Scholar

[35] arrido C L, Martinez M A, Nussenzveig P. Am J Phys, 2002, 70: 37-41 CrossRef Google Scholar

[36] hang Y G, Wu J B, Liang L J, et al. Sci China Inf Sci, 2014, 57: 122401-41 Google Scholar

[37] in B B, Zhang C H, Shen X F, et al. Sci China Inf Sci, 2014, 57: 082408-41 Google Scholar

[38] iang L J, Jin B B, Wu J B, et al. Sci China Inf Sci, 2013, 56: 120412-41 Google Scholar

[39] assin P, Koschny T, Soukoulis C M. Phys B, 2012, 407: 4062-4065 CrossRef Google Scholar

Copyright 2019 Science China Press Co., Ltd. 《中国科学》杂志社有限责任公司 版权所有

京ICP备18024590号-1