logo

SCIENCE CHINA Information Sciences, Volume 59, Issue 4: 042301(2016) https://doi.org/10.1007/s11432-016-5539-3

Quantum network coding for multi-unicast problem based on 2D and 3D cluster states

More info
  • ReceivedOct 30, 2015
  • AcceptedDec 9, 2015
  • PublishedFeb 19, 2016

Abstract

We mainly consider quantum multi-unicast problem over directed acyclic network, where each source wishes to transmit an independent message to its target via bottleneck channel. Taking the advantage of global entanglement state 2D and 3D cluster states, these problems can be solved efficiently. at first, a universal scheme for the generation of resource states among distant communication nodes is provided. The corresponding between cluster and bigraph leads to a constant temporal resource cost. furthermore, a new approach based on stabilizer formalism to analyze the solvability of several underlying quantum multi-unicast networks is presented. It is found that the solvability closely depends on the choice of stabilizer generators for a given cluster state. and then, with the designed measurement basis and parallel measurement on intermediate nodes, we propose optimal protocols for these multi-unicast sessions. also, the analysis reveals that the resource consumption involving spatial resources, operational resources and temporal resources mostly reach the lower bounds.


Funded by

National Natural Science Foundation of China(U1405254)

Program for New Century Excellent Talents in University(NCET-13-0681)

Fok Ying Tung Education Foundation(131067)

National Development Foundation for Cryptological Research(MMJJ201401012)

National Natural Science Foundation of China(61232016)

National Natural Science Foundation of China(61571335)

National Natural Science Foundation of China(61272514)


References

[1] Ahlswede R, Cai N, Li S Y R, et al. IEEE Trans Inf Theory, 2000, 46: 1204-1216 CrossRef Google Scholar

[2] Shen J, Tan H, Wang J, et al. J Internet Tech, 2015, 16: 171-178 Google Scholar

[3] Li S Y R, Yeung R W, Cai N. IEEE Trans Inf Theory, 2003, 49: 371-381 CrossRef Google Scholar

[4] Xie S, Wang Y. Wirel Pers Commun, 2014, 78: 231-246 CrossRef Google Scholar

[5] Xiahou T, Li Z, Wu C. Information multicast in (pseudo-) planar networks: efficient network coding over small finite fields. In: Proceedings of the 2013 IEEE International Symposium on Network Coding, Galary, 2013. 1--6. Google Scholar

[6] Ding L H, Wu P, Wang H, et al. Sci China Inf Sci, 2013, 56: 022303-246 Google Scholar

[7] Zhang C S, Ge J H, Li J, et al. Sci China Inf Sci, 2014, 57: 042312-246 Google Scholar

[8] Pan Z, Zhang Y, Kwong S. IEEE Trans Broadcast, 2015, 61: 166-176 CrossRef Google Scholar

[9] Wootters W K, Zurek W H. Nature, 1982, 299: 802-803 CrossRef Google Scholar

[10] Hayashi M, Iwama K, Nishimura H, et al. Quantum network coding. In: Proceedings of the 24th Annual Conference on Theoretical Aspects of Computer Science. Berlin: Springer-Verlag, 2007. 610--621. Google Scholar

[11] Leung D, Oppenheim J, Winter A. IEEE Trans Inf Theory, 2010, 56: 3478-3490 CrossRef Google Scholar

[12] Hayashi M. Phys Rev A, 2007, 76: 040301-3490 CrossRef Google Scholar

[13] Luo M X, Xu G, Chen X B, et al. Sci Rep, 2014, 4: 4571-3490 Google Scholar

[14] Nishimura H. Quantum network coding and the current status of its studies. In: Proceedings of IEEE International Symposium on Information Theory and its Applications, Melbourne, 2014. 331--334. Google Scholar

[15] Satoh T, Le Gall F, Imai H. Phys Rev A, 2012, 86: 032331-3490 CrossRef Google Scholar

[16] Ma S Y, Chen X B, Luo M X, et al. Opt Commun, 2010, 283: 497-501 CrossRef Google Scholar

[17] Soeda A, Kinjo Y, Turner P S, et al. Phys Rev A, 2011, 84: 012333-501 CrossRef Google Scholar

[18] Akibue S, Murao M. Network coding for distributed quantum computation over cluster and butterfly networks. ArXiv: 1503.07740, 2015. Google Scholar

[19] Kobayashi H, Le Gall F, Nishimura H, et al. General scheme for perfect quantum network coding with free classical communication. In: Proceedings of the 36th International Colloquium on Automata, Languages and Programming, Lecture Note in Computer Science, Greece, 2009. 622--633. Google Scholar

[20] Kobayashi H, Le Gall F, Nishimura H, et al. Perfect quantum network communication protocol based on classical network coding. In: Proceedings of the 2010 IEEE International Symposium on Information Theory, Austin, 2010. 2686--2690. Google Scholar

[21] Kobayashi H, Le Gall F, Nishimura H, et al. Constructing quantum network coding schemes from classical nonlinear protocols. In: Proceedings of the 2011 IEEE International Symposium on Information Theory, Saint-Petersburg, 2011. 109--113. Google Scholar

[22] Li J, Chen X B, Xu G, et al. IEEE Commun Lett, 2015, 19: 115-118 CrossRef Google Scholar

[23] de Beaudrap N, Roetteler M. Quantum linear network coding as one-way quantum computation. In: Proceedings of the 9th Conference on the Theory of Quantum Computation, Communication and Cryptography, Singapore, 2014. 217--233. Google Scholar

[24] Raussendorf R, Browne D E, Briegel H J. Phys Rev A, 2003, 68: 022312-118 CrossRef Google Scholar

[25] Briegel H J, Browne D E, Dür W, et al. Nature Phys, 2009, 5: 19-26 Google Scholar

[26] Zwerger M, Briegel H J, Dür W. Measurement-based quantum communication. ArXiv: 1506.00985, 2015. Google Scholar

[27] Epping M, Kampermann H, Bru{\ss} D. Graph state quantum repeater networks. ArXiv: 1504.06599, 2015. Google Scholar

[28] Briegel H J, Raussendorf R. Phys Rev Lett, 2001, 86: 910-913 CrossRef Google Scholar

[29] Nielsen M A, Chuang I L. Quantum Computation and Quantum Information. 10th ed. New York: Cambridge University Press, 2010. Google Scholar

Copyright 2019 Science China Press Co., Ltd. 《中国科学》杂志社有限责任公司 版权所有

京ICP备18024590号-1