logo

SCIENCE CHINA Information Sciences, Volume 59, Issue 6: 061405(2016) https://doi.org/10.1007/s11432-016-5559-z

Development of two-dimensional materials for electronic applications

More info
  • ReceivedOct 31, 2015
  • AcceptedDec 10, 2015
  • PublishedApr 22, 2016

Abstract

Since the first report of promising electrical properties of Molybdenum disulfide (MoS$_{2}$) transistors in 2011, two-dimensional materials with unique properties have attracted great attention, and much research on their applications has been carried out. MoS$_{2}$ and black phosphorus are excellent candidates for advanced applications in future electronics because of their tunable bandgap, high carrier mobility, and ultra-thin bodies. In this review, recent research trends in the application of molybdenum disulfide and black phosphorus to electronic devices are examined. We mainly address mobility improvements, dielectrics engineering, radio frequency applications, and low-frequency noise, all of which are crucial for the development of electronic and optoelectronic devices.


Funded by

National Natural Science Foundation of China(61390504)

National Natural Science Foundation of China(11404118)


Acknowledgment

Acknowledgments

This project was supported by National Natural Science Foundation of China (Grant Nos. 11404118, 61390504).


References

[1] Xuan Y, Wu Y Q, Ye P D. IEEE Electron Dev Lett, 2008, 29: 294-296 Google Scholar

[2] Del Alamo J A. Nature, 2011, 479: 317-323 Google Scholar

[3] Zhang R, Huang P C, Lin J C, et al. 7-nm EOT using HfO$_ 2 $/Al$_ 2 $O$_ 3 $ /GeO$_ x $/Ge gate stacks fabricated by plasma postoxidation. IEEE Trans Electron Dev, 2013, 60: 927-934 Google Scholar

[4] Wu H, Si M W, Dong L, et al. IEEE Trans Electron Dev, 2015, 62: 1419-1426 Google Scholar

[5] Schwierz F. Nat Nanotechnol, 2010, 5: 487-496 Google Scholar

[6] Novoselov K S, Geim A K, Morozov S V, et al. Science, 2004, 306: 666-669 Google Scholar

[7] Geim A K, Novoselov K S. Nat Mater, 2007, 6: 183-191 Google Scholar

[8] Koski K J, Cui Y. ACS Nano, 2013, 7: 3739-3743 Google Scholar

[9] Miro P, Audiffred M, Heine T. Chem Soc Rev, 2014, 43: 6537-6554 Google Scholar

[10] Chhowalla M, Shin H S, Eda G, et al. Nat Chem, 2013, 5: 263-275 Google Scholar

[11] Radisavljevic B, Radenovic A, Brivio J, et al. Nat Nanotechnol, 2011, 6: 147-150 Google Scholar

[12] Wang Q H, Kalantar-Zadeh K, Kis A, et al. Nat Nanotechnol, 2012, 7: 699-712 Google Scholar

[13] Butler S Z, Hollen S M, Cao L, et al. ACS Nano, 2013, 7: 2898-2926 Google Scholar

[14] Ganatra R, Zhang Q. ACS Nano, 2014, 8: 4074-4099 Google Scholar

[15] Li L K, Yu Y J, Ye G J, et al. Nat Nanotechnol, 2014, 9: 372-377 Google Scholar

[16] Liu H, Neal A T, Zhu Z, et al. ACS Nano, 2014, 8: 4033-4041 Google Scholar

[17] Du H W, Lin X, Xu Z M, et al. J Mater Chem C, 2015, 3: 8760-8775 Google Scholar

[18] Tran V, Soklaski R, Liang Y, et al. Phys Rev B, 2014, 89: 235319-8775 Google Scholar

[19] Ling X, Wang H, Huang S X, et al. Proc Natl Acad Sci, 2015, 112: 4523-4530 Google Scholar

[20] Santos E J G, Kaxiras E. Nano Lett, 2013, 13: 898-902 Google Scholar

[21] Mak K F, Lee C, Hone J, et al. Phys Rev Lett, 2010, 105: 136805-902 Google Scholar

[22] Fiori G, Bonaccorso F, Iannaccone G, et al. Nat Nanotechnol, 2014, 9: 768-779 Google Scholar

[23] Jariwala D, Sangwan V K, Lauhon L J, et al. ACS Nano, 2014, 8: 1102-1120 Google Scholar

[24] Schwierz F, Pezoldt J, Granzner R. Nanoscale, 2015, 7: 8261-8283 Google Scholar

[25] Yazyev O V, Kis A. Mater Today, 2015, 18: 20-30 Google Scholar

[26] Lopez-Sanchez O, Lembke D, Kayci M, et al. Nat Nanotechnol, 2013, 8: 497-501 Google Scholar

[27] Radisavljevic B, Whitwick M B, Kis A. ACS Nano, 2011, 5: 9934-9938 Google Scholar

[28] Late D J, Huang Y-K, Liu B, et al. ACS Nano, 2013, 7: 4879-4891 Google Scholar

[29] Liu H, Neal A T, Ye P D. ACS Nano, 2012, 6: 8563-8569 Google Scholar

[30] Du Y C, Yang L M, Liu H, et al. APL Mater, 2014, 2: 092510-8569 Google Scholar

[31] Liu D, Guo Y, Fang L, et al. Appl Phys Lett, 2013, 103: 183113-8569 Google Scholar

[32] Das S, Chen H-Y, Penumatcha A V, et al. Nano Lett, 2012, 13: 100-105 Google Scholar

[33] Novoselov K S, Jiang D, Schedin F, et al. Proc Nat Acad Sci, 2005, 102: 10451-10453 Google Scholar

[34] Radisavljevic B, Kis A. Nat Mater, 2013, 12: 815-820 Google Scholar

[35] Kaasbjerg K, Thygesen K S, Jacobsen K W. Physl Rev B, 2012, 85: 115317-820 Google Scholar

[36] Kaasbjerg K, Thygesen K S, Jauho A-P. Phys Rev B, 2013, 87: 235312-820 Google Scholar

[37] Jariwala D, Sangwan V K, Late D J, et al. Appl Phys Lett, 2013, 102: 173107-820 Google Scholar

[38] Baugher B W H, Churchill H O H, Yang Y F, et al. Nano Lett, 2013, 13: 4212-4216 Google Scholar

[39] Jena D, Konar A. Phys Rev Lett, 2007, 98: 136805-4216 Google Scholar

[40] Ma N, Jena D. Phys Rev X, 2014, 4: 011043-4216 Google Scholar

[41] Zeng L, Xin Z, Chen S W, et al. Appl Phys Lett, 2013, 103: 113505-4216 Google Scholar

[42] Singh A K, Hennig R G, Davydov A V, et al. Appl Phys Lett, 2015, 107: 053106-4216 Google Scholar

[43] Ong Z-Y, Fischetti M V. Physl Rev B, 2013, 88: 165316-4216 Google Scholar

[44] Bao W Z, Cai X H, Kim D, et al. Appl Phys Lett, 2013, 102: 042104-4216 Google Scholar

[45] Dean C, Young A, Meric I, et al. Nat Nanotechnol, 2010, 5: 722-726 Google Scholar

[46] Cui X, Lee G-H, Kim Y D, et al. Nat Nanotechnol, 2015, 10: 534-540 Google Scholar

[47] Yoon Y, Ganapathi K, Salahuddin S. How good can monolayer MoS$_{2}$ transistors be? Nano Lett, 2011, 11: 3768--3773. Google Scholar

[48] Alam K, Lake R K. IEEE Trans Electron Dev, 2012, 59: 3250-3254 Google Scholar

[49] Liu F, Wang Y, Liu X, et al. IEEE Electron Dev Lett, 2015, 36: 1091-1093 Google Scholar

[50] Liu L T, Lu Y, Guo J. IEEE Trans Electron Dev, 2013, 60: 4133-4139 Google Scholar

[51] Chang J, Register L F, Banerjee S K. Appl Phys Lett, 2013, 103: 223509-4139 Google Scholar

[52] Yang L M, Majumdar K, Du Y C, et al. High-performance MoS$_{2}$ field-effect transistors enabled by chloride doping: record low contact resistance (0.5 kohm* $\upmu$m) and record high drain current (460 $\upmu$A/$\upmu$m). In: Proceedings of 2014 Symposium on VLSI Technology: Digest of Technical Papers, Honolulu, 2014. 192--193. Google Scholar

[53] Li X F, Yang L M, Si M W, et al. Adv Mater, 2015, 27: 1547-1552 Google Scholar

[54] Wu Y Q, Farmer D B, Xia F N, et al. Proc IEEE, 2013, 101: 1620-1637 Google Scholar

[55] Wu Y Q, Lin Y-m, Bol A A, et al. Nature, 2011, 472: 74-78 Google Scholar

[56] Wu Y Q, Jenkins K A, Valdes-Garcia A, et al. Nano Lett, 2012, 12: 3062-3067 Google Scholar

[57] Wang H, Yu L L, Lee Y-H, et al. Large-scale 2D electronics based on single-layer MoS$_{2}$ grown by chemical vapor deposition. In: Proceedings of the 2012 International Electron Devices Meeting, San Francisco, 2012. 4.6.1--4.6.4. Google Scholar

[58] Krasnozhon D, Lembke D, Nyffeler C, et al. Nano Lett, 2014, 14: 5905-5911 Google Scholar

[59] Cheng R, Jiang S, Chen Y, et al. Nat Commun, 2014, 5: 5143-5911 Google Scholar

[60] Sanne A, Ghosh R, Rai A, et al. Nano Lett, 2015, 15: 5039-5045 Google Scholar

[61] Hooge F. IEEE Trans Electron Dev, 1994, 41: 1926-1935 Google Scholar

[62] Von Haartman M, Mikael Ö. Low-frequency Noise in Advanced MOS Devices. Berlin: Springer, 2007. Google Scholar

[63] Razavi B. IEEE J Solid-State Circ, 1996, 31: 331-343 Google Scholar

[64] Sangwan V K, Arnold H N, Jariwala D, et al. Nano Lett, 2013, 13: 4351-4355 Google Scholar

[65] Kwon H-J, Kang H, Jang J, et al. Appl Phys Lett, 2014, 104: 083110-4355 Google Scholar

[66] Renteria J, Samnakay R, Rumyantsev S L, et al. Appl Phys Lett, 2014, 104: 153104-4355 Google Scholar

[67] Rumyantsev S L, Jiang C L, Samnakay R, et al. IEEE Electron Dev Lett, 2015, 36: 517-519 Google Scholar

[68] Keyes R W. Phys Rev, 1953, 92: 580-584 Google Scholar

[69] Morita A. Appl Phys A, 1986, 39: 227-242 Google Scholar

[70] Buscema M, Groenendijk D J, Blanter S I, et al. Nano Lett, 2014, 14: 3347-3352 Google Scholar

[71] Buscema M, Groenendijk D J, Steele G A, et al. Nat Commun, 2014, 5: 4651-3352 Google Scholar

[72] Zhu W N, Yogeesh M N, Yang S X, et al. Nano Lett, 2015, 15: 1883-1890 Google Scholar

[73] Fei R X, Yang L. Nano Lett, 2014, 14: 2884-2889 Google Scholar

[74] Hong T, Chamlagain B, Lin W Z, et al. Nanoscale, 2014, 6: 8978-8983 Google Scholar

[75] Ong Z-Y, Cai Y Q, Zhang G, et al. J Phys Chem C, 2014, 118: 25272-25277 Google Scholar

[76] Ong Z-Y, Zhang G, Zhang Y W. J Appl Phys, 2014, 116: 214505-25277 Google Scholar

[77] Qiao J S, Kong X H, Hu Z-X, et al. Nat Commun, 2014, 5: 4475-25277 Google Scholar

[78] Ge S F, Li C K, Zhang Z M, et al. Nano Lett, 2015, 15: 4650-4656 Google Scholar

[79] Jiang J-W. Thermal conduction in single-layer black phosphorus: highly anisotropic? Nanotechnology, 2015, 26: 055701. Google Scholar

[80] Lu W L, Ma X M, Fei Z, et al. Appl Phys Lett, 2015, 107: 021906-4656 Google Scholar

[81] Wang X M, Jones A M, Seyler K L, et al. Nat Nanotechnol, 2015, 10: 517-521 Google Scholar

[82] Xia F N, Wang H, Jia Y C. Nat Commun, 2014, 5: 4458-521 Google Scholar

[83] Du Y C, Liu H, Deng Y X, et al. ACS Nano, 2014, 8: 10035-10042 Google Scholar

[84] Haratipour N, Robbins M C, Koester S J. IEEE Electron Dev Lett, 2015, 36: 411-413 Google Scholar

[85] Das S, Demarteau M, Roelofs A. ACS Nano, 2014, 8: 11730-11738 Google Scholar

[86] Perello D J, Chae S H, Song S, et al. Nat Commun, 2015, 6: 7809-11738 Google Scholar

[87] Liu H, Neal A T, Si M W, et al. IEEE Electron Dev Lett, 2014, 35: 795-797 Google Scholar

[88] Padilha J E, Fazzio A, da Silva A J R. Phys Rev Lett, 2015, 114: 066803-797 Google Scholar

[89] Kamalakar M V, Madhushankar B N, Dankert A, et al. Small, 2015, 11: 2209-2216 Google Scholar

[90] Joshua O I, Gary A S, Herre S J v d Z, et al. 2D Mater, 2015, 2: 011002-2216 Google Scholar

[91] Wood J D, Wells S A, Jariwala D, et al. Nano Lett, 2014, 14: 6964-6970 Google Scholar

[92] Boukhvalov D W, Rudenko A N, Prishchenko D A, et al. Phys Chem Chem Phys, 2015, 17: 15209-15217 Google Scholar

[93] Wang Z H, Islam A, Yang R, et al. J Vac Sci Technol B, 2015, 33: 052202-15217 Google Scholar

[94] Saito Y, Iwasa Y. ACS Nano, 2015, 9: 3192-3198 Google Scholar

[95] Kim J-S, Liu Y N, Zhu W N, et al. Sci Rep, 2015, 5: 8989-3198 Google Scholar

[96] Favron A, Gaufres E, Fossard F, et al. Nat Mater, 2015, 14: 826-832 Google Scholar

[97] Ziletti A, Carvalho A, Campbell D K, et al. Phys Rev Lett, 2015, 114: 046801-832 Google Scholar

[98] Zhu H, McDonnell S, Qin X Y, et al. ACS Appl Mater Interface, 2015, 7: 13038-13043 Google Scholar

[99] Cai Y Q, Zhang G, Zhang Y-W. J Phys Chem C, 2015, 119: 13929-13936 Google Scholar

[100] Chen X L, Wu Y Y, Wu Z F, et al. Nat Commun, 2015, 6: 7315-13936 Google Scholar

[101] Doganov R A, Koenig S P, Yeo Y, et al. Appl Phys Lett, 2015, 106: 083505-13936 Google Scholar

[102] Doganov R A, O'Farrell E C T, Koenig S P, et al. Nat Commun, 2015, 6: 6647-13936 Google Scholar

[103] Gillgren N, Wickramaratne D, Shi Y M, et al. 2D Mater, 2015, 2: 011001-13936 Google Scholar

[104] Li L K, Ye G J, Tran V, et al. Nat Nanotechnol, 2015, 10: 608-613 Google Scholar

[105] Tayari V, Hemsworth N, Fakih I, et al. Nat Commun, 2015, 6: 7702-613 Google Scholar

[106] Yasaei P, Kumar B, Foroozan T, et al. Adv Mater, 2015, 27: 1887-1892 Google Scholar

[107] Kang J, Wood J D, Wells S A, et al. ACS Nano, 2015, 9: 3596-3604 Google Scholar

[108] Yang Z B, Hao J H, Yuan S G, et al. Adv Mater, 2015, 27: 3748-3754 Google Scholar

[109] Li X S, Deng B C, Wang X M, et al. 2D Mater, 2015, 2: 031002-3754 Google Scholar

[110] Wang H, Wang X M, Xia F N, et al. Nano Lett, 2014, 14: 6424-6429 Google Scholar

[111] Vandamme L, Li X S, Rigaud D. 1/f noise in MOS devices, mobility or number fluctuations? IEEE Trans Electron Dev, 1994, 41: 1936--1945. Google Scholar

[112] Na J H, Lee Y T, Lim J A, et al. ACS Nano, 2014, 8: 11753-11762 Google Scholar

[113] Li X F, Du Y C, Si M W, et al. Nanoscale, 2016, 8: 3572-3578 Google Scholar

Copyright 2019 Science China Press Co., Ltd. 《中国科学》杂志社有限责任公司 版权所有

京ICP备18024590号-1