logo

SCIENCE CHINA Information Sciences, Volume 59, Issue 6: 061402(2016) https://doi.org/10.1007/s11432-016-5561-5

Fully depleted SOI (FDSOI) technology

More info
  • ReceivedDec 1, 2015
  • AcceptedJan 12, 2016
  • PublishedApr 25, 2016

Abstract

Fully depleted SOI (FDSOI) has become a viable technology not only for continued CMOS scaling to 22 nm node and beyond but also for improving the performances of legacy technology when retrofitting to old technology nodes. In this paper, we provide an overview of FDSOI technology, including the benefits and challenges in FDSOI design, manufacturing, and ecosystem. We articulate that FDSOI is potential cornerstone for China to catch up and leapfrog in semiconductor technology% .


Acknowledgment

Acknowledgments

We appreciate the discussions and contributions to FDSOI technology from our colleagues and former colleagues. Part of FDSOI work reported in this paper was performed by Research Alliance Teams at various IBM Research and Development Facilities.


References

[1] Semiconductor Industry Association Global Sales Report. http://www.semiconductors.org/industry{\_}statistics/global{\_}\linebreak sales{\_}report/. Google Scholar

[2] Moore G E. Electronics, 1965, 38: 82-85 Google Scholar

[3] Auth C, Allen C, Blattner A, et al. A 22nm high performance and low-power CMOS technology featuring fully-depleted tri-gate transistors, self-aligned contacts and high density MIM capacitors. In: Proceedings of VLSI 2012 Symposium on Technology (VLSIT), Honolulu, 2012. 131--132. Google Scholar

[4] Dennard R H, Gaensslen F H, Rideout V L, et al. IEEE J Solid-State Circuits, 1974, 9: 256-268 Google Scholar

[5] Wann H, Ko P K, Hu C. Gate-induced band-to-band tunneling leakage current in LDD MOSFETs. In: Technical Digest of International Electron Devices Meeting, San Francisco, 1992. 147--150. Google Scholar

[6] Bhavnagarwala A, Kosonocky S, Radens C, et al. Fluctuation limits {&} scaling opportunities for CMOS SRAM cells. In: Technical Digest of International Electron Devices Meeting, Washington DC, 2005. 659--662. Google Scholar

[7] Choi Y-K, Asano K, Lindert N, et al. IEEE Electron Dev Lett, 1999, 21: 254-255 Google Scholar

[8] Noel J-P, Thomas O, Jaud M-A, et al. UTB-FDSOI device architecture dedicated to low power design techniques. {In: Proceedings of the European Solid-State Device Research Conference (ESSDERC)}, Sevilla, 2010. 210--213. Google Scholar

[9] Tsutsui G, Saitoh M, Hiramoto T. IEEE Electron Dev Lett, 2005, 26: 836-838 Google Scholar

[10] Skotnicki T, Hutchby J A, King T-J, et al. IEEE Circuits Dev Mag, 2006, 21: 16-26 Google Scholar

[11] Kilchytska V, Md Arshad M K, Makovejev S, et al. Solid-State Electron, 2012, 70: 50-58 Google Scholar

[12] Fenouillet-Beranger C, Denormel S, Icard B, et al. Fully-depleted SOI technology using high-K and single-metal gate for 32nm node LSTP applications featuring 0.179$\upmu $m$^{2}$ 6T-SRAM bitcell. In: Technical Digest of International Electron Devices Meeting, Washington DC, 2007. 267--270. Google Scholar

[13] Skotnicki T. Competitive SOC with UTBB SOI. In: Proceedings of 2011 IEEE International SOI Conference (SOI), Tempe, 2011. 1--61. Google Scholar

[14] Liu Q, Yagashita A, Loubet N, et al. Ultra-thin-body and BOX (UTBB) fully depleted (FD) device integration for 22nm node and beyond. In: Proceedings of 2010 Symposium on VLSI Technology (VLSIT), Honolulu, 2010. 61--62. Google Scholar

[15] Grenouillet L, Vinet M, Gimbert J, et al. UTBB FDSOI transistors with dual STI and shrinked back gate architecture for a multi-$V_{T}$ strategy at 20nm node and below. In: Technical Digest of International Electron Devices Meeting, San Francisco, 2012. 64--67. Google Scholar

[16] Andrieu F, Weber O, Mazurier J, et al. Low leakage and low variability ultra-thin body and buried oxide (UT2B) SOI technology for 20nm low power CMOS and beyond. In: Proceedings of 2010 Symposium on VLSI Technology (VLSIT), Honolulu, 2010. 57--58. Google Scholar

[17] Numata T, Noguchi M, Oowaki Y, et al. Back gate engineering for suppression of threshold voltage fluctuation in fully-depleted SOI MOSFETs. In: Proceedings of 2000 IEEE International SOI Conference, Wakefield, 2000. 78--79. Google Scholar

[18] Sugii N, Tsuchiya R, Ishigaki T, et al. Comprehensive study on Vth variability in silicon on thin BOX (SOTB) CMOS with small random-dopant fluctuation: finding a way to further reduce variation. In: Proceedings of 2008 International Electron Devices Meeting, San Francisco, 2008. 1--4. Google Scholar

[19] Sugii N, Tsuchiya R, Ishigaki T, et al. IEEE Trans Electron Dev, 2010, 57: 835-845 Google Scholar

[20] Doris B, Ieong M, Zhu T, et al. Device design considerations for ultra-thin SOI MOSFETs. In: Technical Digest of International Electron Devices Meeting, Washington DC, 2003. 27.3.1--27.3.4. Google Scholar

[21] Schwarzenbach W, Cauchy X, Boedt F, et al. Excellent silicon thickness uniformity on ultra-thin SOI for controlling $V_{T}$ variation of FDSOI. In: Proceedings of IEEE International Conference on IC Design and Technology, Kao-hsiung, 2011. 1--3. Google Scholar

[22] Nayfeh H M, Singh D V, Hergenrother J M, et al. IEEE Electron Dev Lett, 2006, 27: 288-290 Google Scholar

[23] Barral V, Poiroux T, Andrieu F, et al. Strained FDSOI CMOS technology scalability down to 2.5nm film thickness and 18nm gate length with a TiN/HfO$_{2}$ gate stack. In: Technical Digest of International Electron Devices Meeting, Washington DC, 2007. 61--64. Google Scholar

[24] Uchida K, Watanabe H, Kinoshita A, et al. Experimental study on carrier transport mechanism in ultrathin-body SOI n- and p-MOSFETs with SOI thickness less than 5 nm. In: Technical Digest of International Electron Devices Meeting, San Francisco, 2002. 47--50. Google Scholar

[25] Faynot O, Andrieu F, Weber O, et al. Planar fully depleted SOI technology: a powerful architecture for the 20nm node and beyond. In: Technical Digest of International Electron Devices Meeting, San Francisco, 2010. 50--53. Google Scholar

[26] Fenouillet-Beranger C, Perreau P, Pham-Nguyen L, et al. Hybrid FDSOI/Bulk high-k/Metal gate platform for Low Power (LP) multimedia technology. In: Technical Digest of International Electron Devices Meeting, Baltimore, 2009. 1--4. Google Scholar

[27] Majumdar A, Wang X, Kumar A, et al. IEEE Electron Dev Lett, 2009, 30: 413-415 Google Scholar

[28] Majumdar A, Ren Z, Koester S J, et al. IEEE Trans Electron Dev, 2009, 56: 2270-2276 Google Scholar

[29] Cheng K, Khakifirooz A, Kulkarni P, et al. Fully depleted extremely thin SOI technology fabricated by a novel integration scheme featuring implant-free, zero-silicon-loss, and faceted raised source/drain. In: Proceedings of 2009 Symposium on VLSI Technology (VLSIT), Honolulu, 2009. 212--213. Google Scholar

[30] Khakifirooz A, Cheng K, Nagumo T, et al. Strain engineered extremely thin SOI (ETSOI) for high-performance CMOS. In: Proceedings of 2012 Symposium on VLSI Technology (VLSIT), Honolulu, 2012. 117--118. Google Scholar

[31] Cheng K, Khakifirooz A, Kulkarni P, et al. Extremely thin SOI (ETSOI) CMOS with record low variability for low power system-on-chip applications. In: Proceedings of 2009 IEEE International Electron Devices Meeting (IEDM), Baltimore, 2009. 49--52. Google Scholar

[32] Cheng K, Khakifirooz A, Loubet N, et al. High performance extremely thin SOI (ETSOI) hybrid CMOS with Si channel NFET and strained sige channel PFET. In: Technical Digest of International Electron Devices Meeting, San Francisco, 2012. 18.1.1--18.4. Google Scholar

[33] Khakifirooz A, Cheng K, Kulkarni P, et al. Challenges and opportunities of extremely thin SOI (ETSOI) CMOS technology for future low power and general purpose system-on-chip applications. In: Proceedings of International Symposium on VLSI Technology Systems and Applications (VLSI-TSA), Hsinchu, 2010. 110--111. Google Scholar

[34] Ponoth S, Vinet M, Grenouillet L, et al. Implant approaches and challenges for 20nm node and beyond ETSOI devices. In: Proceedings of 2011 IEEE International SOI Conference, Tempe, 2011. 1--2. Google Scholar

[35] Chau R, Kavalieros J, Doyle B, et al. A 50nm depleted-substrate CMOS Transistor (DST). In: Technical Digest of International Electron Devices Meeting, Washington DC, 2001. 29.1.1--29.1.4. Google Scholar

[36] Krivokapic Z, Maszara W, Arasnia F, et al. High performance 25nm FDSOI devices with extremely thin silicon channel. In: Proceedings of 2003 Symposium on VLSI Technology (VLSIT), Kyoto, 2003, 131--132. Google Scholar

[37] Chen H, Chang C, Huang C, et al. Novel 20nm hybrid SOI/bulk CMOS technology with 0.183$\upmu$m$^{2}$ 6T-SRAM cell by immersion lithography. In: Proceedings of 2005 Symposium on VLSI Technology (VLSIT), Kyoto, 2005. 16--17. Google Scholar

[38] Fenouillet C, Perreau P, Denorme S, et al. Impact of a 10 nm ultrathin BOX (UTBOX) and ground plane on FDSOI devices for 32 nm node and below. {In: Proceedings of the European Solid-State Device Research Conference (ESSDERC)}, Athens, 2009. 89--91. Google Scholar

[39] Fenouillet C, Thomas O, Perreau P, et al. Efficient multi-$V_{T}$ FDSOI technology with UTBOX for low power circuit design. In: Proceedings of 2010 Symposium on VLSI Technology (VLSIT), Honolulu, 2010. 65--66. Google Scholar

[40] Skotnicki T, Fenouillet-Beranger C, Gallon C, et al. IEEE Trans Electron Dev, 2008, 55: 96-130 Google Scholar

[41] Leobandung E, Barth E, Sherony M, et al. High performance 0.18 pm SOI CMOS technology. In: Technical Digest of International Electron Devices Meeting, Washington DC, 1999. 679--682. Google Scholar

[42] Puri R, Chuang C T. Hysteresis effect in pass-transistor based partially-depleted SOI CMOS circuits. In: Proceedings of 1998 IEEE International SOI Conference, Stuart, 1998. 103--104. Google Scholar

[43] Skotnicki T, Fenouillet-Beranger C, Gallon C, et al. IEEE Trans Electron Dev, 2008, 55: 96-130 Google Scholar

[44] Khakifirooz A, Antoniadis D A. IEEE Trans Electron Dev, 2008, 55: 1391-1400 Google Scholar

[45] Pelgrom M. IEEE J Solid-State Circuits, 1989, 24: 1433-1439 Google Scholar

[46] Cheng K, Khakifirooz A. FDSOI technology and its implications to analog and digital design. In: Jiang X C, ed. Digitally-Assisted Analog and Analog-Assisted Digital IC Design. Cambridge: Cambridge University Press, 2015. 86. Google Scholar

[47] Kuhn K J. IEEE Trans Electron Dev, 2012, 59: 1813-1828 Google Scholar

[48] Yamamoto Y, Makiyama H, Shinohara H, et al. Ultralow-voltage operation of Silicon-on-Thin-BOX (SOTB) 2Mbit SRAM down to 0.37 V utilizing adaptive back bias. In: Proceedings of 2013 Symposium on VLSI Technology (VLSIT), Kyoto, 2013. T212--T213. Google Scholar

[49] Khakifirooz A, Cheng K, Jagannathan B, et al. Fully depleted extremely thin SOI for mainstream 20nm low-power technology and beyond. In: 2010 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC), San Francisco, 2010. 152--153. Google Scholar

[50] Ghani T, Armstrong M, Auth C, et al. A 90nm high volume manufacturing logic technology featuring novel 45nm gate length strained silicon CMOS transistors. In: Technical Digest of International Electron Devices Meeting, Washington DC, 2003. 11.6.1--11.6.3. Google Scholar

[51] Lee W-H, Waite A, Nii H, et al. High performance 32nm SOI CMOS with high-k/metal gate and 0.149$\upmu $m$^{2}$ SRAM and ultra low-k back end with eleven levels of copper. In: Technical Digest of International Electron Devices Meeting, Washington DC, 2005. 56--59. Google Scholar

[52] Narasimha S, Chang P, Ortolland C, et al. 22nm high-performance SOI technology featuring dual-embedded stressors, epi-plate high-k deep-trench embedded DRAM and self-aligned via 15LM BEOL. In: Technical Digest of International Electron Devices Meeting, San Francisco, 2012. 3.3.1--3.3.4. Google Scholar

[53] Leobandung E, Nayakama H, Mocuta D, et al. High performance 65 nm SOI technology with dual stress line and low capacitance SRAM cell. In: 2005 Symposium on VLSI Technology, Digest of Technical Papers, Kyoto, 2005. 126--127. Google Scholar

[54] Ota K, Sugihara K, Sayama H, et al. Novel locally strained channel technique for high performance 55 nm CMOS. In: Proceedings of International Electron Devices Meeting, San Francisco, 2002, 27--30. Google Scholar

[55] Lim K-Y, Lee H, Ryu C, et al. Novel stress-memorization-technology (SMT) for high electron mobility enhancement of gate last high-k/metal gate devices. In: Proceedings of International Electron Devices Meeting, San Francisco, 2010. 10.1.1--10.1.4. Google Scholar

[56] Jan C-H, Bhattacharya U, Brain R, et al. A 22nm SoC platform technology featuring 3-D tri-gate and high-k/metal gate, optimized for ultra low power, high performance and high density SoC applications. In: Proceedings of International Electron Devices Meeting, San Francisco, 2012. 3.1.1--3.1.4. Google Scholar

[57] Natarajan S, Agostinelli M, Akbar S, et al. A 14nm logic technology featuring 2nd-generation FinFET, air-gapped interconnects, self-aligned double patterning and a 0.0588$\upmu$m$^2$ SRAM cell size. In: Proceedings of International Electron Devices Meeting, San Francisco, 2014. 3.7.1--3.7.3. Google Scholar

[58] Jan C-H, Al-amoody F, Chang H-Y, et al. A 14 nm SoC platform technology featuring 2nd generation tri-gate transistors, 70 nm gate pitch, 52 nm metal pitch, and 0.0499 um$^{2}$ SRAM cells, optimized for low power, high performance and high density SoC products. In: Proceedings of 2015 Symposium on VLSI Technology, Kyoto, 2015. T12--T13. Google Scholar

[59] Liu Q, DeSalvo B, Morin P, et al. FDSOI CMOS devices featuring dual strained channel and thin BOX extendable to the 10nm node. In: Proceedings of International Electron Devices Meeting, San Francisco, 2014. 9.1.1---9.1.4. Google Scholar

[60] Kube M, Hori R, Minato O, et al. A threshold voltage controlling circuit for short channel MOS integrated circuits. In: Technical Digest of 1976 IEEE International Solid-State Circuits Conference, Philadelphia, 1976. 54--55. Google Scholar

[61] Thompson S, Young I, Greason J, et al. Dual threshold voltage and substrate bias: Keys to high performance, low power, 0.1 $\upmu $m logic designs. In: 1997 Symposium on VLSI Technology, Digest of Technical Papers, Kyoto, 1997. 69--70. Google Scholar

[62] Nomura S, Tachibana F, Fujita T, et al. A 9.7mW AAC-decoding, 620mW H.264 720p 60fps decoding, 8-core media processor with embedded forward-body-biasing and power-gating circuit in 65nm CMOS technology. In: IEEE International Solid-State Circuits Conference, Digest of Technical Papers, San Francisco, 2008. 262--612. Google Scholar

[63] Sumita M, Sakiyama S, Kinoshita M, et al. IEEE J Solid-State Circuits, 2005, 40: 60-66 Google Scholar

[64] Jacquet D, Hasbani F, Flatresse P, et al. IEEE J Solid-State Circuits, 2014, 49: 812-826 Google Scholar

[65] Wilson R, Beigne E, Flatresse P, et al. A 460MHz at 397mV, 2.6GHz at 1.3V, 32b VLIW DSP, Embedding FMAX Tracking. In: 2014 IEEE International Solid-State Circuits Conference, Digest of Technical Papers, San Francisco, 2014. 452--453. Google Scholar

[66] Ishibashi K, Sugii N, Usami K, et al. A perpetuum mobile 32bit CPU with 13.4pJ/cycle, 0.14$\upmu $A sleep current using reverse body bias assisted 65nm SOTB CMOS technology. In: 2014 IEEE COOL Chips XVII, Yokohama, 2014. 1--3. Google Scholar

[67] Beigne E, Valentian A, Miro-Panades I, et al. 6GHz at 1.3V, 32 bits VLIW DSP embedding $F_{max}$ tracking. {IEEE J Solid-State Circuits}, 2015, 50: 125-136 Google Scholar

[68] Clerc S, Saligane M, Abouzeid F, et al. A 0.33V/$-40^\circ\text{C}$ process/temperature closed-loop compensation SoC embedding all-digital clock multiplier and DC-DC converter exploiting FDSOI 28nm back-gate biasing. In: Proceedings of 2015 IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, 2015. 1--3. Google Scholar

[69] SFARDS. SFARDS new 28nm BTC & LTC dual-algorithm ASIC unveiled. http://www.sfards.com/detail?id=26. Google Scholar

[70] Bitcoin Wiki. ASIC. https://en.bitcoin.it/wiki/ASIC. Google Scholar

[71] Miyazaki M, Kao J, Chandrakasan A P. A 175mV multiply-accumulate unit using an adaptive supply voltage and body bias (ASB) architecture. In: 2002 IEEE International Solid-State Circuits Conference, Digest of Technical Papers, San Francisco, 2002. Google Scholar

[72] Keshavarizi A, Narendra S, Bloechel B, et al. IEEE J Solid-State Circuits, 2003, 38: 696-701 Google Scholar

[73] Soitec. Press release ``Soitec and Shin-Etsu Handotai announce Smart Cut{\texttrademark} licensing extension and expanded technology cooperation". 2012. http://www.soitec.com/en/news/press-releases/soitec-and-shin-etsu-handotai-announce-smart-cut-licensing-extension-and-expanded-technology-cooperation-1079/. Google Scholar

[74] Shin-Etsu Handotai Co. Ultra Thin Body and Buried oxide substrate supply chain. FD-SOI Workshop, Kyoto, 2013. http: ://-{\ Google Scholar

[75] Soitec. Press release ``Soitec and SunEdison enter into patent license agreement". 2013. http://www.soitec.com/en-\linebreak /news/press-releases/soitec-and-sunedison-enter-into-patent-license-agreement-1390/. Google Scholar

[76] Seo K-I, Haran B, Gupta D, et al. A 10nm platform technology for low power and high performance application featuring FINFET devices with multi workfunction gate stack on bulk and SOI. In: 2014 Symposium on VLSI Technology: Digest of Technical Papers, Honolulu, 2014. 1--2. Google Scholar

[77] Seo S-C, Edge L F, Kanakasabapathy S, et al. Full metal gate with borderless contact for 14 nm and beyond. In: Proceedings of 2011 Symposium on VLSI Technology (VLSIT), Honolulu, 2011. 36--37. Google Scholar

[78] Kamohara S, Sugii N, Yamamoto Y, et al. Ultralow-voltage design and technology of silicon-on-thin-buried-oxide (SOTB) CMOS for highly energy efficient electronics in IoT era. In: 2014 Symposium on VLSI Technology: Digest of Technical Papers, Honolulu, 2014. 1--2. Google Scholar

Copyright 2019 Science China Press Co., Ltd. 《中国科学》杂志社有限责任公司 版权所有

京ICP备18024590号-1