logo

SCIENCE CHINA Information Sciences, Volume 59, Issue 6: 061404(2016) https://doi.org/10.1007/s11432-016-5565-1

Synaptic electronics and neuromorphic computing

More info
  • ReceivedJan 26, 2016
  • AcceptedFeb 23, 2016
  • PublishedMay 11, 2016

Abstract

In order to map the computing architecture and intelligent functions of the human brain on hardware, we need electronic devices that can emulate biological synapses and even neurons, preferably at the physical level. Beginning with the history of neuromorphic computation, in this article, we will briefly review the architecture of the brain and the learning mechanisms responsible for its plasticity. We will also introduce several memristive devices that have been used to implement electronic synapses, presenting some important milestones in this area of research and discussing their advantages, disadvantages, and future prospects.


References

[1] Turing A. Proc London Math Soc, 1936, 42: :-265 Google Scholar

[2] von Neumann J. IEEE Ann Hist Comput, 1993, 15: 11-21 Google Scholar

[3] Turing A. Intelligent machinery. In: Copeland B J, ed. {The Essential Turing: Seminal Writings in Computing, Logic, Philosophy, Artificial Intelligence, and Artificial Life plus The Secrets of Enigma}. New York: Oxford University Press, 2004. 406--443. Google Scholar

[4] Anderson H C. IEEE Potentials, 1989, 8: 13-16 Google Scholar

[5] Squire L R, Berg D, Bloom F, et al. Curr Opin Neurobiol, 2008, 10: 649-654 Google Scholar

[6] Kandel E R, Schwartz J H, Jessell T M. {Principles of Neural Science}. 4th ed. New York: McGraw-Hill Medical, 2000. Google Scholar

[7] Bennett M V L, Zukin R S. Neuron, 2004, 41: 495-511 Google Scholar

[8] Zamarre\ {n}o-Ramos C, Camu\ {n}as-Mesa L A, Pérez-Carrasco J A, et al. Front Neurosci, 2011, 5: 1-22 Google Scholar

[9] Pereda A E. Nat Rev Neurosci, 2014, 15: 250-63 Google Scholar

[10] Noback C R, Ruggiero D A, Demarest R J, The Human Nervous System: Structure and Function, 6th ed. Totowa: Humana Press, 2005. Google Scholar

[11] Versace M, Chandler B. MoNETA: a mind made from memristors. {IEEE Spectr}, 2010. http://spectrum.ieee.org/\linebreak robotics/artificial-intelligence/moneta-a-mind-made-from-memristors. Google Scholar

[12] Chua L, Adamatzky A. {Memristor Networks}. Switzerland: Springer International Publishing, 2013. Google Scholar

[13] Mead C. Proc IEEE, 1990, 78: 1629-1636 Google Scholar

[14] Diorio C, Hasler P, Minch B A, et al. IEEE Trans Electron Dev, 1996, 43: 1972-1980 Google Scholar

[15] Wong H-S P, Raoux S, Kim S, et al. Proc IEEE, 2010, 98: 2201-2227 Google Scholar

[16] Waser R, Aono M. Nat Mater, 2007, 6: 833-840 Google Scholar

[17] Versace M, Chandler B. IEEE Spectr, 2010, 47: 30-37 Google Scholar

[18] Snider G. Amerson R, Carter D, et al. Computer, 2011, 44: 21-28 Google Scholar

[19] Hylton T. DARPA SyNAPSE Project. {Arlington}, 2009. Google Scholar

[20] Ananthanarayanan R, Esser S K, Simon H D, et al. The cat is out of the bag: cortical simulations with 109 neurons, 1013 synapses. In: Proceedings of the Conference on High Performance Computing Networking, Storage and Analysis, Portland, 2009. 1--12. Google Scholar

[21] Merolla P A, Arthur J V, Alvarez-Icaza R, et al. Science, 2014, 345: 668-673 Google Scholar

[22] Furber S B, Lester D R, Plana L A, et al. IEEE Trans Comput, 2013, 62: 2454-2467 Google Scholar

[23] Markram H. Nat Rev Neurosci, 2006, 7: 153-160 Google Scholar

[24] Schemmel J, Grubl A, Hartmann S, et al. Live demonstration: a scaled-down version of the BrainScaleS wafer-scale neuromorphic system. In: Proceedings of 2012 IEEE International Symposium on Circuits and Systems, Seoul, 2012. 702. Google Scholar

[25] Boahen K. Neurogrid: Emulating a Million Neurons in the Cortex. In: Proceedings of 28th IEEE Engineering in Medicine and Biology Society Annual International Conference, New York, 2006. Supp: 6702. Google Scholar

[26] Benjamin B V, Gao P, McQuinn E, et al. Proc IEEE, 2014, 102: 699-716 Google Scholar

[27] Hebb D O. The first stage of perception: growth of the assembly. In: The Organization of Behavior. Hoboken: John Wiley & Sons Inc., 1949. 60--78. Google Scholar

[28] Markram H, Gerstner W, Sjöström P J. Front Synaptic Neurosci, 2011, 3: :-24 Google Scholar

[29] Markram H, Lübke J, Frotscher M, et al. Science, 1997, 275: 213-215 Google Scholar

[30] Levy W B, Steward O. Neuroscience, 1983, 8: 791-797 Google Scholar

[31] Cooper L N, Bear M F. Nat Rev Neurosci, 2012, 13: :-810 Google Scholar

[32] Bi G Q, Poo M M. J Neurosci, 1998, 18: :-10472 Google Scholar

[33] Bienenstock E L, Cooper L N, Munro P W. J Neurosci, 1982, 2: 32-48 Google Scholar

[34] Sejnowski T, Chattarji S, Sfanton P. Induction of synaptic plasticity by hebbian covariance in the hippocampus. In: The Computing Neuron. Boston: Addison-Wesley Longman Publishing Co., 1989. 105--124. Google Scholar

[35] Lynch M A. Physiol Rev, 2004, 84: 87-136 Google Scholar

[36] Bliss T V P, Lomo T. J Physiol, 1973, 232: 331-356 Google Scholar

[37] Mulkey R, Herron C, Malenka R. Science, 1993, 261: 1051-1055 Google Scholar

[38] Sjostrom P J, Gerstner W. Scholarpedia, 2010, 5: 1362-1055 Google Scholar

[39] Gütig R, Aharonov R, Rotter S, et al. J Neurosci, 2003, 23: 3697-3714 Google Scholar

[40] Rubin J, Lee D D, Sompolinsky H. Physl Rev Lett, 2001, 86: 364-367 Google Scholar

[41] van Rossum M C, Bi G Q, Turrigiano G G. J Neurosci, 2000, 20: :-8821 Google Scholar

[42] Purves D, Augustine G J, Fitzpatrick D, et al. Neuroscience. 2nd ed. Sunderland: Sinauer Associates, 2001. Google Scholar

[43] Lee M-J, Lee C B, Lee D, et al. Nat Mater, 2011, 10: 625-630 Google Scholar

[44] Chanthbouala A, Garcia V, Cherifi R O, et al. Nat Mater, 2012, 11: 860-864 Google Scholar

[45] Yang J J, Pickett M D, Li X, et al. Nat Nanotechnol, 2008, 3: :-433 Google Scholar

[46] Wuttig M, Yamada N. Nat Mater, 2007, 6: :-832 Google Scholar

[47] Kuzum D, Jeyasingh R G D, Lee B, et al. Nano Lett, 2012, 12: :-2186 Google Scholar

[48] Yang J J, Strukov D B, Stewart D R. Nat Nanotechnol, 2013, 8: :-24 Google Scholar

[49] Strukov D B, Snider G S, Stewart D R, et al. Nature, 2008, 453: 80-83 Google Scholar

[50] Chua L O, Kang S M. Proc IEEE, 1976, 64: :-223 Google Scholar

[51] Hickmott T W, Hiatt W R. Appl Phys Lett, 1965, 6: 106-108 Google Scholar

[52] Hickmott T W. J Appl Phys, 1962, 33: 2669-108 Google Scholar

[53] Chua L. Appl Phys A-Mater Sci Process, 2011, 102: 765-783 Google Scholar

[54] Rajendran B, Liu Y, Seo J S, et al. IEEE Trans Electron Dev, 2013, 60: :-253 Google Scholar

[55] Snider G S. Spike-timing-dependent learning in memristive nanodevices. In: {Proceedings of 2008 IEEE/ACM International Symposium on Nanoscale Architectures NANOARCH 2008}, Anaheim, 2008. 85--92. Google Scholar

[56] Wong H S P, Lee H Y, Yu S M, et al. Proc IEEE, 2012, 100: 1951-1970 Google Scholar

[57] Yang J J, Miao F, Pickett M D, et al. Nanotechnology, 2009, 20: 215201-1970 Google Scholar

[58] Yang Y, Gao P, Li L, et al. Nat Commun, 2014, 5: 4232-1970 Google Scholar

[59] Sarkar B, Lee B, Misra V. Semicond Sci Technol, 2015, 30: 105014-1970 Google Scholar

[60] Rolandi M, Josberger E E, Deng Y X. Two-terminal proton conducting devices with synaptic behavior and memory. In: Proceedings of 72nd Device Research Conference, Santa Barbara, 2014. 245--246. Google Scholar

[61] Yang R, Terabe K, Yao Y, et al. Nanotechnology, 2013, 24: 384003-1970 Google Scholar

[62] Jung J-W, Park S, Jeong Y-H. ReRAM-based synaptic device for neuromorphic computing. In: {Proceedings of IEEE International Symposium on Circuits and Systems (ISCAS)}, Melbourne VIC, 2014. 1054--1057. Google Scholar

[63] Mandal S, El-Amin A, Alexander K, et al. Sci Rep, 2014, 4: 5333-1970 Google Scholar

[64] Gao B, Liu L, Kang J. Prog Nat Sci Mater Int, 2015, 25: 47-50 Google Scholar

[65] Wang Y-F, Lin Y-C, Wang I-T, et al. Sci Rep, 2015, 5: 10150-50 Google Scholar

[66] Yu S M, Wu Y, Jeyasingh R, et al. IEEE Trans Electron Dev, 2011, 58: 2729-2737 Google Scholar

[67] Gao B, Bi Y, Chen H Y, et al. ACS Nano, 2014, 8: 6998-7004 Google Scholar

[68] Choi H, Jung H, Lee J, et al. Nanotechnology, 2009, 20: 345201-7004 Google Scholar

[69] Panwar N, Kumar D, Upadhyay N K, et al. Memristive synaptic plasticity in Pr0.7Ca0.3MnO3 RRAM by bio-mimetic programming. In: Proceedings of 72nd Device Research Conference, Santa Barbara, 2014. 135--136. Google Scholar

[70] Pershin Y V, Di Ventra M. Proc IEEE, 2012, 100: :-2080 Google Scholar

[71] Kim S, Du C, Sheridan P, et al. Nano Lett, 2015, 15: 2203-2211 Google Scholar

[72] Valov I, Waser R, Jameson J R, et al. Nanotechnology, 2011, 22: 254003-2211 Google Scholar

[73] Kozicki M N, Gopalan C, Balakrishnan M, et al. Nonvolatile memory based on solid electrolytes. In: {Proceedings of Symposium on Non-Volatile Memory Technology}, Orlando, 2004. 10--17. Google Scholar

[74] Kund M, Beitel G, Pinnow C-U, et al. Conductive bridging RAM (CBRAM): an emerging non-volatile memory technology scalable to sub 20nm. In: Technical Digest of IEEE International Electron Devices Meeting, Washington DC, 2005. 754--757. Google Scholar

[75] Hirose Y, Hirose H. J Appl Phys, 1976, 47: 2767-2772 Google Scholar

[76] Gopalan C, Ma Y, Gallo T, et al. Demonstration of conductive bridging random access memory (CBRAM) in logic CMOS process. In: Proceedings of 2010 IEEE International Memory Workshop, Seoul, 2010. 1--4. Google Scholar

[77] Lu W, Jeong D S, Kozicki M, et al. Electrochemical metallization cells-blending nanoionics into nanoelectronics? MRS Bull, 2012, 37: 124--130. Google Scholar

[78] Liu Q, Sun J, Lv H, et al. Adv Mater, 2012, 24: 1774-2772 Google Scholar

[79] Ohno T, Hasegawa T, Tsuruoka T, et al. Nat Mater, 2011, 10: 591-595 Google Scholar

[80] Atkinson R, Shiffrin R. 2nd ed. Psych Learn Motiv, 1968, 2: 89-195 Google Scholar

[81] Yu S M, Wong H S P. Modeling the switching dynamics of programmable-metallization-cell (PMC) memory and its application as synapse device for a neuromorphic computation system. In: Proceedings of 2010 IEEE International Electron Devices Meeting (IEDM), San Francisco, 2010. 520--523. Google Scholar

[82] Yu S M, Wong H S P. IEEE Trans Electron Dev, 2011, 58: 1352-1360 Google Scholar

[83] Suri M, Querlioz D, Bichler O, et al. IEEE Trans Electron Dev, 2013, 60: 2402-2409 Google Scholar

[84] Mahalanabis D, Barnaby H J, Gonzalez-Velo Y, et al. Solid State Electron, 2014, 100: 39-44 Google Scholar

[85] Jo S H, Chang T, Ebong I, et al. Nano Lett, 2010, 10: 1297-1301 Google Scholar

[86] Kim K H, Gaba S, Wheeler D, et al. Nano Lett, 2012, 12: 389-395 Google Scholar

[87] Petersen C C, Malenka R C, Nicoll R A, et al. Proc Nat Acad Sci USA, 1998, 95: 4732-4737 Google Scholar

[88] O'Connor D H, Wittenberg G M, Wang S S-H. Proc Nat Acad Sci USA, 2005, 102: 9679-9684 Google Scholar

[89] Suri M, Bichler O, Querlioz D, et al. IEEE Trans Electron Dev, 2013, 60: 2402-2409 Google Scholar

[90] Li S Z, Zeng F, Chen C, et al. J Mater Chem C, 2013, 1: 5292-5298 Google Scholar

[91] Yang Y, Chen B, Lu W D. Adv Mater, 2015, 27: 7720-7727 Google Scholar

[92] Ielmini D. Filamentary-switching model in RRAM for time, energy and scaling projections. In: {Proceedings of 2011 IEEE International Electron Devices Meeting (IEDM)}, Washington DC, 2011. 17.2.1--17.2.4. Google Scholar

[93] Belmonte A, Kim W, Chan B T, et al. IEEE Trans Electron Dev, 2013, 60: 3690-3695 Google Scholar

[94] Russo U, Kamalanathan D, Ielmini D, et al. IEEE Trans Electron Dev, 2009, 56: 1040-1047 Google Scholar

[95] {Å}kerman J. Science, 2005, 308: 508-510 Google Scholar

[96] Wang K L, Alzate J G, Amiri P K. J Phys D Appl Phys, 2013, 46: 074003-510 Google Scholar

[97] Augustine C, Mojumder N N, Fong X, et al. IEEE Sens J, 2012, 12: 756-766 Google Scholar

[98] Roy K, Fan D, Fong X, et al. IEEE J Emerg Sel Top Circuits Syst, 2015, 5: 5-16 Google Scholar

[99] Devolder T, Hayakawa J, Ito K, et al. Phys Rev Lett, 2008, 100: 057206-16 Google Scholar

[100] Zhang Y, Zhao W, Prenat G, et al. IEEE Trans Magn, 2013, 49: 4375-4378 Google Scholar

[101] Vincent A F, Larroque J, Locatelli N, et al. IEEE Trans Biomed Circuits Syst, 2015, 9: 166-174 Google Scholar

[102] Zeng Z M, Amiri P K, Rowlands G, et al. Appl Phys Lett, 2011, 98: 072512-174 Google Scholar

[103] Zhou P, Zhao B, Yang J, et al. Energy reduction for STT-RAM using early write termination. In: Digest of Technical Papers of 2009 IEEE/ACM International Conference on Computer-Aided Design, San Jose, 2009. 264--268. Google Scholar

[104] Daughton J M. Advanced MRAM Concepts. 2001. http://www.nve.com/Downloads/mram2.pdf. Google Scholar

[105] Ovshinsky S R. Phys Rev Lett, 1968, 21: :-1453 Google Scholar

[106] Wong H S P, Raoux S, Kim S, et al. Proc IEEE, 2010, 98: 2201-2227 Google Scholar

[107] Lai S. Current status of the phase change memory and its future. In: Technical Digest of IEEE International Electron Devices Meeting, Washington DC, 2003. 10.1.1--10.1.4. Google Scholar

[108] Lankhorst M H R, Ketelaars B W S M M, Wolters R A M. Nat Mater, 2005, 4: 347-352 Google Scholar

[109] Park J-B, Park G-S, Baik H-S, et al. J Electrochem Soc, 2007, 154: H139-H141 Google Scholar

[110] Loke D, Lee T H, Wang W J, et al. Science, 2012, 336: 1566-1569 Google Scholar

[111] Ovshinsky S R, Pashmakov B. Innovation providing new multiple functions in phase-change materials to achieve cognitive computing. {MRS Proc}, 2003, 803. Google Scholar

[112] Suri M, Bichler O, Querlioz D, et al. Phase change memory as synapse for ultra-dense neuromorphic systems: application to complex visual pattern extraction. In: {Proceedings of 2011 IEEE International Electron Devices Meeting (IEDM)}, Washington DC, 2011. 4.4.1--4.4.4. Google Scholar

[113] Jackson B L, Rajendran B, Corrado G S, et al. J Emerg Technol Comput Syst, 2013, 9: 12-20 Google Scholar

[114] Eryilmaz S B, Kuzum D, Jeyasingh R, et al. Front Neurosci, 2014, 8: :-11 Google Scholar

[115] Schaller R R. IEEE Spectr, 1997, 34: 52-59 Google Scholar

[116] Mead C. Proc IEEE, 1990, 78: 1629-1636 Google Scholar

[117] Hasler P, Diorio C, Minch B A, et al. Single transistor learning synapse with long term storage. In: Proceedings of 1995 IEEE International Symposium on Circuits and Systems, Seattle, 1995. 3: 1660--1663. Google Scholar

[118] Merolla P, Arthur J, Akopyan F, et al. A digital neurosynaptic core using embedded crossbar memory with 45pJ per spike in 45nm. In: Proceedings of 2011 IEEE Custom Integrated Circuits Conference (CICC), San Jose, 2011. 1--4. Google Scholar

[119] Seo J, Brezzo B, Liu Y, et al. A 45nm CMOS neuromorphic chip with a scalable architecture for learning in networks of spiking neurons. In: Proceedings of 2011 IEEE Custom Integrated Circuits Conference (CICC), San Jose, 2011. 1--4. Google Scholar

[120] Bartolozzi C, Indiveri G. Neural Comput, 2007, 19: 2581-2603 Google Scholar

[121] Mack C A. IEEE Trans Semicond Manuf, 2011, 24: 202-207 Google Scholar

[122] Likharev K K. Neuromorphic CMOL circuits. In: {Proceedings of 2003 3rd IEEE Conference on Nanotechnology}, San Francisco, 2003. 2: 339--342. Google Scholar

[123] Likharev K, Mayr A, Muckra I, et al. Ann N Y Acad Sci, 2003, 1006: 146-163 Google Scholar

[124] Likharev K K, Strukov D. B. CMOL: Devices, Circuits, and Architectures. In: Cuniberti G, Richter K, Fagas G, eds. Introducing Molecular Electronics. Berlin/Heidelberg: Springer, 2006. 447--477. Google Scholar

[125] Feldheim D L, Keating C D. Chem Soc Rev, 1998, 27: 1-12 Google Scholar

[126] Ma X, Strukov D B, Lee J H, et al. Afterlife for silicon: CMOL circuit architectures. In: {Proceedings of 2005 5th IEEE Conference on Nanotechnology}, Nagoya, 2005. 175--178. Google Scholar

[127] Rumelhart D E, Hinton G E, Williams R J. Nature, 1986, 323: 533-536 Google Scholar

[128] Maass W. Neural Netw, 1997, 10: 1659-1671 Google Scholar

[129] Hodgkin A, Huxley A. Bull Math Biol, 1990, 52: 25-71 Google Scholar

[130] Izhikevich E M. Philos Trans A Math Phys Eng Sci, 2010, 368: 5061-5070 Google Scholar

[131] O'Reilly R C. Science, 2006, 314: :-94 Google Scholar

[132] Herz A V M, Gollisch T, Machens C K, et al. Science, 2006, 314: 80-85 Google Scholar

[133] Brüderle D, Petrovici M A, Vogginger B, et al. Biol Cybern, 2011, 104: 263-296 Google Scholar

[134] Arthur J V, Boahen K. IEEE Trans Circuits Syst I-Regul Pap, 2011, 58: 1034-1043 Google Scholar

[135] Rachmuth G, Poon C-S. HFSP J, 2008, 2: 156-166 Google Scholar

[136] Mead C. Analog VLSI and Neural Systems. Boston: Addison-Wesley Longman Publishing Co., Inc., 1989. 179--186. Google Scholar

[137] Pickett M D, Medeiros-Ribeiro G, Williams R S. Nat Mater, 2013, 12: 114-117 Google Scholar

[138] Park S, Noh J, Choo M-L, et al. Nanotechnology, 2013, 24: 384009-117 Google Scholar

[139] Serrano-Gotarredona T, Prodromakis T, Linares-Barranco B. IEEE Circuits Syst Mag, 2013, 13: 74-88 Google Scholar

Copyright 2019 Science China Press Co., Ltd. 《中国科学》杂志社有限责任公司 版权所有

京ICP备18024590号-1