logo

SCIENCE CHINA Information Sciences, Volume 59, Issue 6: 061403(2016) https://doi.org/10.1007/s11432-016-5566-0

3D resistive RAM cell design for high-density storage class memory---a review

More info
  • ReceivedDec 3, 2015
  • AcceptedJan 18, 2016
  • PublishedMay 9, 2016

Abstract

In this article, we comprehensively review recent progress in the ReRAM cell technology for 3D integration focusing on a material/device level. First we briefly mention pioneering work on high-density crossbar ReRAM arrays which paved the way to 3D integration. We discuss the two main proposed 3D integration schemes---3D horizontally stacked ReRAM vs 3D Vertical ReRAM and their respective advantages and disadvantages. We follow with the detailed memory cell design on important work in both areas, utilizing either filamentary or interface-limited switching mechanisms. We also discuss our own contributions on HfO$_{2}$-based filamentary 3D Vertical ReRAM as well as TaO$_{x}$/TiO$_{2 }$ bilayer-based self-rectifying 3D Vertical ReRAM. Finally, we summarize the present status and provide an outlook for the nearterm future.


Funded by

Winbond Electronics Corp. and VEGA Project 2/0138/2014. Boris HUDEC acknowledges the financial support of the International Visegrad Fund. Tuo-Hung HOU acknowledges support in part by NCTU- UCB I-RiCE Program(Grant MOST 105-2911-I-009-301)

Ministry of Science and Technology of Taiwan(Grant NSC 102-2221-E-009-188-MY3)


Acknowledgment

Acknowledgments

This work was supported by Ministry of Science and Technology of Taiwan (Grant NSC 102-2221-E-009-188-MY3), Winbond Electronics Corp. and VEGA Project 2/0138/2014. Boris HUDEC acknowledges the financial support of the International Visegrad Fund. Tuo-Hung HOU acknowledges support in part by NCTU- UCB I-RiCE Program (Grant MOST 105-2911-I-009-301).


References

[1] {The digital universe of opportunities: rich data and the increasing value of the Internet of Things.} http://www.\linebreak emc.com/leadership/digital-universe/2014iview/executive-summary.htm. Google Scholar

[2] IBM. IBM details next generation of storage innovation. http://www-03.ibm.com/press/us/en/pressrelease/2020-\linebreak 9.wss. Google Scholar

[3] Burr G W, Kurdi B N, Scott J C, et al. IBM J Res Dev, 2008, 52: 449-464 Google Scholar

[4] Burr G W, Shenoy R S, Virwani K, et al. J Vac Sci Technol B, 2014, 32: 040802-464 Google Scholar

[5] Hwang C S. Adv Electron Mater, 2015, 1: 1400056-464 Google Scholar

[6] Kgil T, Roberts D, Mudge T. Improving NAND flash based disk caches. {In:} {Proceedings of 35th International Symposium on Computer Architecture}, Beijing, 2008. 327--338. Google Scholar

[7] Tanaka H, Kido M, Yahashi K, et al. Bit cost scalable technology with punch and plug processfor ultra high density flash memory. {In: Proceedings of IEEE Symposium on VLSI Technology}, Kyoto, 2007. 14--15. Google Scholar

[8] Nitayama A, Aochi H. Bit cost scalable (BiCS) technology for future ultra high density storage memories. {In: Proceedings of IEEE Symposium on VLSI Technology}, Kyoto, 2013. T61--T62. Google Scholar

[9] Park K T, Han J M, Kim D, et al. Three-dimensional 128Gb MLC vertical NAND flash-memory with 24-WL stacked layers and 50MB/s high-speed programming. {In: Digest of Technical Papers of 2014 IEEE International Solid-State Circuits Conference}, San Francisco, 2014. 334--335. Google Scholar

[10] Wang K L, Alzate J G, Amiri P K. J Phys D Appl Phys, 2013, 46: 074003-464 Google Scholar

[11] Kim C, Kwon K, Park C, et al. A covalent-bonded cross-coupled current-mode sense amplifier for STT-MRAM with 1T1MTJ common source-line structure array. {In: Digest of Technical Papers of 2015 IEEE International Solid-State Circuits Conference}, San Francisco, 2015. 134--135. Google Scholar

[12] Noguchi H, Ikegami K, Kushida K, et al. A 3.3ns-access-time 71.2$\upmu $W/MHz 1Mb embedded STT-MRAM using physically eliminated read-disturb scheme and normally-off memory architecture. {In: Digest of Technical Papers of 2015 IEEE International Solid-State Circuits Conference}, San Francisco, 2015. 136--137. Google Scholar

[13] Yamada J, Miwa T, Koike H, et al. A 128 kb FeRAM macro for a contact/contactless smart card microcontroller. {In: Digest of Technical Papers of 2000 IEEE International Solid-State Circuits Conference}, San Francisco, 2000. 270--271. Google Scholar

[14] Müller J, Böscke T S, Müller S, et al. Ferroelectric hafnium oxide: a CMOS-compatible and highly scalable approach to future ferroelectric memories. {In: Proceedings of 2013 IEEE International Electron Devices Meeting}, Washington DC, 2013. 280--283. Google Scholar

[15] Waser R, Aono M. Nat Mater, 2007, 6: 833-840 Google Scholar

[16] Govoreanu B, Kar G S, Chen Y Y, et al. $10\times10$ nm$^{2}$ Hf/HfO$_{x}$ cross-bar resistive RAM with excellent performance, reliability and low-energy operation. {In: Proceedings of 2011 IEEE International Electron Devices Meeting}, Washington DC, 2011. 729--732. Google Scholar

[17] Wu M C, Lin Y W, Tseng T Y. Electron Dev Lett, 2011, 32: 1026-1028 Google Scholar

[18] Lee H Y, Chen P S, Wu T Y, et al. Low power and high speed bipolar switching with a thin reactive Ti buffer layer in robust HfO$_{2}$-based RRAM. {In: Proceedings of 2008 IEEE International Electron Devices Meeting}, San Francisco, 2008. 297--300. Google Scholar

[19] Lee M J, Lee C B, Lee D, et al. Nat Mater, 2010, 10: 625-630 Google Scholar

[20] Sawa A. Resistive switching in transition metal oxides, {Mater Today}, 2008, 11: 28--36. Google Scholar

[21] Waser R, Dittmann R, Staikov G, et al. Adv Mat, 2009, 21: 2632-2663 Google Scholar

[22] Zhuge F, Li K, Fu B, et al. AIP Adv, 2015, 5: 057125-2663 Google Scholar

[23] Wedig A, Luebben M, Cho D Y, et al. Nat Nanotechnol, 2016, 11: 67-74 Google Scholar

[24] Ahn S E, Lee M J, Park Y, et al. Adv Mater, 2008, 20: 924-928 Google Scholar

[25] Kwon D H, Kim K M, Jang J H, et al. Nat Nanotech, 2010, 5: 148-153 Google Scholar

[26] Burr G W, Breitwisch M J, Franceschini M, et al. J Vac Sci Technol B, 2010, 28: 223-262 Google Scholar

[27] Deringer V L, Dronskowski R, Wuttig M. Adv Funct Mat, 2015, 25: 6343-6359 Google Scholar

[28] Lam C H. Phase Change Memory and its intended applications. {In: Proceedings of 2014 IEEE International Electron Devices Meeting}, San Francisco, 2014. 29.3.1--29.3.4. Google Scholar

[29] Stanisavljevic M, Athmanathan A, Papandreou N, et al. Phase-change memory: feasibility of reliable multilevel-cell storage and retention at elevated temperatures. {In: Proceedings of 2015 IEEE International Reliability Physics Symposium (IRPS)}, Monterey, 2015. 5B.6.1--5B.6.6. Google Scholar

[30] Edwards A H, Barnaby H J, Campbell K A, et al. Proc IEEE, 2015, 103: 1004-1033 Google Scholar

[31] Lee J S, Lee S, Noh T W. Appl Phys Rev, 2015, 2: 031303-1033 Google Scholar

[32] Menzel S, Böttger U, Wimmer M, et al. Adv Funct Mat, 2015, 25: 6306-6325 Google Scholar

[33] Chen F T, Lee H Y, Chen Y S, et al. Sci China Inf Sci, 2011, 54: 1073-1086 Google Scholar

[34] Sheu S S, Chiang P C, Lin W P, et al. A 5 ns fast write multi-level non-volatile 1 Kbits RRAM memory with advance write scheme. {In: Proceedings of 2009 Symposium on VLSI Circuits}, Kyoto, 2009. 82--83. Google Scholar

[35] Wang C H, Tsai Y H, Lin K C, et al. Three-dimensional $4F^{2}$ ReRAM cell with CMOS logic compatible process. {In: Proceedings of 2010 IEEE International Electron Devices Meeting}, San Francisco, 2010. 664--667. Google Scholar

[36] Grossi A, Zambelli C, Olivo P, et al. Electrical characterization and modeling of pulse-based forming techniques in RRAM arrays. {Solid-State Electron} 2016, 115: 17--25. Google Scholar

[37] Linn E, Rosezin R, Kugeler C, Waser R. Nat Mater, 2010, 9: 403-406 Google Scholar

[38] Huang C H, Huang J S, Lin S M, et al. ACS Nano, 2012, 6: 8407-8414 Google Scholar

[39] Huang J J, Tseng Y M, Hsu C W, et al. Electron Dev Lett, 2011, 32: 1427-1429 Google Scholar

[40] Deng Y X, Chen H Y, Gao B, et al. Design and optimization methodology for 3D RRAM arrays. {In: Proceedings of 2013 IEEE International Electron Devices Meeting}, Washington DC, 2013. 25.7.1--25.7.4. Google Scholar

[41] Tseng Y H, Huang C-E, Kuo C-H, et al. High density and ultra small cell size of Contact ReRAM (CR-RAM) in 90nm CMOS logic technology and circuits. {In: Proceedings of 2009 IEEE International Electron Devices Meeting}, Baltimore, 2009. 109--112. Google Scholar

[42] Sheu S-S, Chiang P-C, Lin W-P, et al. A 5ns fast write multi-level non-volatile 1 K bits RRAM memory with advance write scheme. {In: Proceedings of 2009 Symposium on VLSI Circuits}, Kyoto, 2009. 82--83. Google Scholar

[43] Wei Z, Kanzawa Y, Arita K, et al. Highly reliable TaO$_x$ ReRAM and direct evidence of redox reaction mechanism. In: Proceedings of 2008 IEEE International Electron Devices Meeting, San Francisco, 2008. 1--4. Google Scholar

[44] Wang X P, Fang Z, Li X, et al. Highly compact 1T-1R architecture ($4F^{2}$ footprint) involving fully CMOS compatible vertical GAA nano-pillar transistors and oxide-based RRAM cells exhibiting excellent NVM properties and ultra-low power operation. {In: Proceedings of 2012 IEEE International Electron Devices Meeting}, San Francisco, 2012. 20.6.1--20.6.4. Google Scholar

[45] Yasuhara R, Ninomiya T, Muraoka S, et al. Consideration of conductive filament for realization of low-current and highly-reliable TaO$_x$ ReRAM. {In: Proceedings of 2013 5th IEEE International Memory Workshop (IMW)}, Monterey, 2013. 34--37. Google Scholar

[46] Zahurak J, Miyata K, Fischer M, et al. Process integration of a 27nm, 16Gb Cu ReRAM. {In: Proceedings of 2014 IEEE International Electron Devices Meeting}, San Francisco, 2014. 140--143. Google Scholar

[47] Kau D C, Tang S, Karpov I V, et al. A stackable cross point phase change memory. {In: Proceedings of 2009 IEEE International Electron Devices Meeting}, Baltimore, 2009. 617--620. Google Scholar

[48] Tran X A, Gao B, Kang J F, et al. High performance unipolar AlO$_{y}$/HfO$_{x}$/Ni based RRAM compatible with Si diodes for 3D application. {In: Proceedings of IEEE Symposium on VLSI Technology}, Kyoto, 2011. 44--45. Google Scholar

[49] Kang M J, Park T J, Kwon Y W, et al. PRAM cell technology and characterization in 20nm node size. {In: Proceedings of 2011 IEEE International Electron Devices Meeting}, Washington DC, 2011. 39--42. Google Scholar

[50] Choi Y, Song I, Park M-H, et al. A 20nm 1.8V 8Gb PRAM with 40MB/s program bandwidth. {In: Digest of Technical Papers of 2012 IEEE International Solid-State Circuits Conference}, San Francisco, 2012. 46--47. Google Scholar

[51] Lee M J, Park Y, Kang B S, et al. 2-stack 1D-1R coss-point structure with oxide diodes as switch elements for high density resistance RAM applications. {In: Proceedings of 2007 IEEE International Electron Devices Meeting}, Washington DC, 2007. 771--774. Google Scholar

[52] Lee M J, Seo S, Kim D C, et al. Adv Mater, 2007, 19: 73-76 Google Scholar

[53] Huang J J, Kuo C W, Chang W C, et al. Appl Phys Lett, 2010, 96: 262901-76 Google Scholar

[54] Govoreanu B, Zhang L, Crotti D, et al. Thin-Silicon Injector (TSI): an all-silicon engineered barrier, highly nonlinear selector for high density resistive RAM applications. {In: Proceedings of 2015 IEEE International Memory Workshop (IMW)}, Monterey, 2015. 1--4. Google Scholar

[55] Sasago Y, Kinoshita M, Morikawa T, et al. Cross-point phase change memory with $4F^{2}$ cell size driven by low-contact-resistivity poly-Si diode. {In: Proceedings of IEEE Symposium on VLSI Technology}, Kyoto, 2009. 24--25. Google Scholar

[56] Cha E, Woo J, Lee D, et al. Selector devices for 3-D cross-point ReRAM. {In: Proceedings of International Symposium on Circuits and Systems (ISCAS)}, Melbourne VIC, 2014. 428--431. Google Scholar

[57] Choi B J, Zhang J M, Norris K, et al. Adv Mater, 2016, 28: 356-362 Google Scholar

[58] Kim G H, Lee J H, Ahn Y, et al. Adv Funct Mat, 2013, 23: 1440-1449 Google Scholar

[59] Huang J-J, Tseng Y-M, Luo W-C, et al. One selector-one resistor (1S1R) crossbar array for high-density flexible memory applications. {In: Proceedings of 2011 IEEE International Electron Devices Meeting}, Washington DC, 2011. 733--736. Google Scholar

[60] Kim S, Liu X, Park J, et al. Ultrathin (<10 nm) Nb$_{2}$O$_{5}$/NbO$_{2}$ hybrid memory with both memory and selector characteristics for high density 3D vertically stackable RRAM applications. {In: Proceedings of IEEE Symposium on VLSI Technology}, Honolulu, 2012. 155--156. Google Scholar

[61] Lee H D, Kim S G, Cho K, et al. Integration of 4F2 selector-less crossbar array 2Mb ReRAM based on transition metal oxides for high density memory applications. {In: Proceedings of IEEE Symposium on VLSI Technology}, Honolulu, 2012. 151--152. Google Scholar

[62] Kim W G, Lee H M, Kim B Y, et al. NbO$_{2}$-based low power and cost effective 1S1R switching for high density cross point ReRAM application. {In: Proceedings of IEEE Symposium on VLSI Technology}, Honolulu, 2014. 1--2. Google Scholar

[63] Lee S, Lee D, Woo J, et al. Selector-less ReRAM with an excellent non-linearity and reliability by the band-gap engineered multi-layer titanium oxide and triangular shaped AC pulse. {In: Proceedings of 2013 IEEE International Electron Devices Meeting}, Washington DC, 2013. 272--275. Google Scholar

[64] Jo S H, Kumar T, Narayanan S, et al. 3D-stackable crossbar resistive memory based on field assisted superlinear threshold (FAST) selector. {In: Proceedings of 2014 IEEE International Electron Devices Meeting}, San Francisco, 2014. 160--163. Google Scholar

[65] Seok J Y, Song S J, Yoon J H, et al. Adv Funct Mat, 2014, 24: 5316-5339 Google Scholar

[66] Baek I G, Park C J, Ju H, et al. Realization of vertical resistive memory (VRRAM) using cost effective 3D process. {In: Proceedings of 2011 IEEE International Electron Devices Meeting (IEDM)}, Washington DC, 2011. 31.8.1--31.8.4. Google Scholar

[67] Yoon H S, Baek I-G, Zhao J, et al. Vertical cross-point resistance change memory for ultra-high density non-volatile memory applications. {In: Proceedings of IEEE Symposium on VLSI Technology}, Kyoto, 2009. 26--27. Google Scholar

[68] Zhang L Q, Cosemans S, Wouters D J, et al. Analysis of vertical cross-point resistive memory (VRRAM) for 3D RRAM design. {In: Proceedings of 2013 5th IEEE International Memory Workshop}, Monterey, 2013. 155--158. Google Scholar

[69] Xu C, Niu D, Yu S, Xie Y. Modeling and design analysis of 3D vertical resistive memory---a low cost cross-point architecture. {In: Proceedings of 19th Asia and South Pacific Design Automation Conference (ASP-DAC)}, Singapore, 2014. 825--830. Google Scholar

[70] Chevallier C J, Siau C H, Lim S F, et al. A 0.13$\upmu $m 64Mb multi-layered conductive metal-oxide memory. {In: Digest of Technical Papers of 2010 IEEE International Solid-State Circuits Conference}, San Francisco, 2010. 260--261. Google Scholar

[71] Meyer R, Schloss L, Brewer J, et al. Oxide dual-layer memory element for scalable non-volatile cross-point memory technology. {In: Proceedings of 9th Annual Non-Volatile Memory Technology Symposium (NVMT)}, Pacific Grove, 2008. 1--5. Google Scholar

[72] Kawahara A, Azuma R, Ikeda Y, et al. An 8Mb multi-layered cross-point ReRAM macro with 443MB/s write throughput. In: Proceedings of 2012 IEEE International Solid-State Circuits Conference, San Francisco, 2012. 432--434. Google Scholar

[73] Liu T-Z, Yan T H, Scheuerlein R, et al. A 130.7mm$^{2}$ 2-layer 32Gb ReRAM memory device in 24nm technology. {In: Digest of Technical Papers of 2013 IEEE International Solid-State Circuits Conference}, San Francisco, 2013. 210--211. Google Scholar

[74] Intel and Micron Produce Breakthrough Memory Technology. http://newsroom.intel.com/community/intel{\_}news-\linebreak room/blog/ 2015/07/28/intel-and-micron-produce-breakthrough-memory-technology. Google Scholar

[75] Chin Y-W, Chen S-E, Hsieh M-C, et al. Point twin-bit RRAM in 3D interweaved cross-point array by Cu BEOL process. {In: Proceedings of 2014 IEEE International Electron Devices Meeting}, San Francisco, 2014. 148--151. Google Scholar

[76] Chien W C, Lee F M, Lin Y Y, et al. Multi-layer sidewall WO$_{X}$ resistive memory suitable for 3D ReRAM. {In: Proceedings of 2012 Symposium on VLSI Technology (VLSIT)}, Honolulu, 2012. 153--154. Google Scholar

[77] Chen H-Y, Yu S M, Gao B, et al. HfO$_x$ based vertical resistive random access memory for cost-effective 3D cross-point architecture without cell selector. {In: Proceedings of 2012 IEEE International Electron Devices Meeting}, San Francisco, 2012. 497--500. Google Scholar

[78] Yu S M, Chen H-Y, Gao B, et al. ACS Nano, 2013, 7: 2320-2325 Google Scholar

[79] Yu S M, Chen H-Y, Deng Y, et al. 3D Vertical RRAM---scaling limit analysis and demonstration of 3D array operation.{ In: Proceedings of IEEE Symposium on VLSI Technology}, Kyoto, 2013. T158--T159. Google Scholar

[80] Sohn J, Lee S, Jiang Z, et al. Atomically thin graphene plane electrode for 3D RRAM. {In: Proceedings of 2014 IEEE International Electron Devices Meeting}, San Francisco, 2014. 116--119. Google Scholar

[81] Zhao L, Jiang Z, Chen H-Y, et al. Ultrathin ($\sim2$ nm) HfO$_{x}$ as the fundamental resistive switching element: thickness scaling limit, stack engineering and 3D Integration. {In: Proceedings of 2014 IEEE International Electron Devices Meeting}, San Francisco, 2014. 156--159. Google Scholar

[82] Gao B, Chen B, Liu R, et al. IEEE Trans Electron Dev, 2014, 61: 1377-1381 Google Scholar

[83] Bai Y, Wu H Q, Wu R, et al. Sci Rep, 2014, 4: 5780-1381 Google Scholar

[84] Hudec B, Wang I-T, Lai W-L, et al. J Phys D Appl Phys, 2016, 49: 215102-1381 Google Scholar

[85] Jan\v{c}ovi\v{c}, Hudec B, Dobro\v{c}ka E, et al. Resistive switching in HfO$_{2}$-based atomic layer deposition grown metal-insulator-metal structures. {Appl Surf Sci}, 2014. 312: 112--116. Google Scholar

[86] Butcher B, Bersuker G, Young-Fischer K G, et al. Hot forming to improve memory window and uniformity of low-power HfO$_{x}$ based RRAMs. {In: Proceedings of 2012 4th IEEE International Memory Workshop}, Milan, 2012. 1--4. Google Scholar

[87] Kalantarian A, Bersuker G, Gilmer D C, et al. Controlling uniformity of RRAM characteristics through the forming process. {In: Proceedings of 2012 IEEE International Reliability Physics Symposium (IRPS)}, Anaheim, 2012. 6C.4.1--6C.4.5. Google Scholar

[88] Walczyk D, Walczyk Ch, Schroeder T, et al. Microelectron Eng, 2011, 88: 1133-1135 Google Scholar

[89] Yang J J, Zhang M-X, Pickett M D, et al. Appl Phys Lett, 2012, 100: 113501-1135 Google Scholar

[90] Park S-G, Yang M K, Ju H, et al. A non-linear ReRAM cell with sub-1$\upmu $A ultralow operating current for high density vertical resistive memory (VRRAM). {In: Proceedings of 2012 IEEE International Electron Devices Meeting}, San Francisco, 2012. 501--504. Google Scholar

[91] Govoreanu B, Redolfi A, Zhang L, et al. Vacancy-modulated conductive oxide resistive ram (VCMO-RRAM): an area-scalable switching current, self-compliant, highly nonlinear and wide on/off-window resistive switching cell. {In: Proceedings of 2013 IEEE International Electron Devices Meeting}, Washington DC, 2013. 256--259. Google Scholar

[92] Chen Y-S, Lee H-Y, Chen P-S, et al. IEEE Electron Dev Lett, 2014, 35: 202-204 Google Scholar

[93] Yoon J H, Kim K M, Song S J, et al. Adv Mater, 2015, 27: 3811-3816 Google Scholar

[94] Yoon J H, Song S J, Yoo I-H, et al. Adv Funct Mater, 2014, 24: 5086-5095 Google Scholar

[95] Hsu C-W, Wang I-T, Lo C-L, et al. Self-rectifying bipolar TaO$_{x}$/TiO$_{2}$ RRAM with superior endurance over 10$^{12}$ cycles for 3D high-density storage-class memory. {In: Proceedings of IEEE Symposium on VLSI Technology}, Kyoto, 2013. T166--T167. Google Scholar

[96] Hsu C-W, Wan C-C, Wang I-T, et al. 3D vertical TaO$_{x}$/TiO$_{2}$ RRAM with over 10$^{3}$ self-rectifying ratio and sub-$\upmu $A operating current.{ In: Proceedings of 2013 IEEE International Electron Devices Meeting}, Washington DC, 2013. 10.4.1--10.4.4. Google Scholar

[97] Hsu C-W, Wang Y-F, Wan C-C, et al. Nanotechnology, 2014, 25: 165202-5095 Google Scholar

[98] Wang Y-F, Lin Y-C, Wang I-T, et al. Sci Rep, 2015, 5: 10150-5095 Google Scholar

[99] Lai W-L, Chou C-T, Hsu C-W, et al. Interface engineering in homogeneous barrier modulation RRAM for 3D vertical memory applications. {In: Proceedings of International Conference on Solid State Devices and Materials, Tsukuba, 2014}. 412--413. Google Scholar

[100] Chou C-T, Hudec B, Hsu C-W, et al. Microelectron Reliab, 2015, 55: 2220-2223 Google Scholar

[101] Kim S, Du C, Sheridan P, et al. Nano Lett, 2015, 15: 2203-2211 Google Scholar

[102] Burr G W, Shelby R M, Sidler S, et al. IEEE Trans Electron Dev, 2015, 62: 3498-3507 Google Scholar

[103] Wang I-T, Lin Y-C, Wang Y-F, et al. 3D synaptic architecture with ultralow sub-10 fJ energy per spike for neuromorphic computation. {In: Proceedings of 2014 IEEE International Electron Devices Meeting}, San Francisco, 2014. 28.5.1--28.5.4. Google Scholar

[104] Gao B, Wang I-T, Chen P-Y, et al. Nanotechnology, 2015, 26: 455204-3507 Google Scholar

[105] Siemon A, Breuer T, Aslam N, et al. Adv Funct Mater, 2015, 25: 6414-6423 Google Scholar

Copyright 2020 Science China Press Co., Ltd. 《中国科学》杂志社有限责任公司 版权所有

京ICP备18024590号-1       京公网安备11010102003388号