logo

SCIENCE CHINA Information Sciences, Volume 61, Issue 4: 042302(2018) https://doi.org/10.1007/s11432-016-9068-y

Baseline distribution optimization and missing data completionin wavelet-based CS-TomoSAR

More info
  • ReceivedNov 4, 2016
  • AcceptedMar 23, 2017
  • PublishedAug 25, 2017

Abstract

In this paper, we propose a coherence of measurement matrix-basedbaseline distribution optimization criterion, together with an ${L_1}$regularization missing data completion method for unobserved baselines(not belonging to the actual baseline distribution), to facilitatewavelet-based compressive sensing-tomographic synthetic aperture radarimaging (CS-TomoSAR) in forested areas. Using $M$ actual baselines, wefirst estimate the optimal baseline distribution with $N$ baselines$(N~>~M)$, including $N-M$ unobserved baselines, via the proposedcoherence criterion. We then use the geometric relationship between theactual and unobserved baseline distributions to reconstruct thetransformation matrix by solving an ${L_1}$ regularization problem, andcalculate the unobserved baseline data using the measurements of actualbaselines and the estimated transformation matrix. Finally, we exploitthe wavelet-based CS technique to reconstruct the elevation via thecompleted data of $N$ baselines. Compared to results obtained using onlythe data of actual baselines, the recovered image based on the datasetobtained by our proposed method shows higher elevation recovery accuracyand better super-resolution ability. Experimental results based onsimulated and real data validated the effectiveness of the proposed method.


References

[1] Reigber A, Moreira A. First demonstration of airborne SAR tomography using multibaseline L-band data. IEEE Trans Geosci Remote Sens, 2000, 38: 2142-2152 CrossRef ADS Google Scholar

[2] Fornaro G, Lombardini F, Serafino F. Three-Dimensional Multipass SAR Focusing: Experiments With Long-Term Spaceborne Data. IEEE Trans Geosci Remote Sens, 2005, 43: 702-714 CrossRef ADS Google Scholar

[3] Zhu X X, Bamler R. Tomographic SAR Inversion by $L_{1}$ -Norm Regularization-The Compressive Sensing Approach. IEEE Trans Geosci Remote Sens, 2010, 48: 3839-3846 CrossRef ADS Google Scholar

[4] Bi H, Zhang B C, Hong W. Matrix completion-based distributed compressive sensing for polarimetric SAR tomography. Sci China Inf Sci, 2015, 58: 119301. Google Scholar

[5] Nannini M, Scheiber R, Moreira A. Estimation of the Minimum Number of Tracks for SAR Tomography. IEEE Trans Geosci Remote Sens, 2009, 47: 531-543 CrossRef ADS Google Scholar

[6] Bi H, Zhang B, Hong W. L$_{q}$ regularization-based unobserved baselines' data estimation method for tomographic synthetic aperture radar inversion. J Appl Remote Sens, 2016, 10: 035014 CrossRef ADS Google Scholar

[7] Donoho D L. Compressed sensing. IEEE Trans Inform Theor, 2006, 52: 1289-1306 CrossRef Google Scholar

[8] Candès E J, Romberg J K, Tao T. Stable signal recovery from incomplete and inaccurate measurements. Comm Pure Appl Math, 2006, 59: 1207-1223 CrossRef Google Scholar

[9] Nyquist H. Certain Topics in Telegraph Transmission Theory. Trans Am Inst Electr Eng, 1928, 47: 617-644 CrossRef ADS Google Scholar

[10] Shannon C. Communication in the presence of noise. Proc Inst Radio Eng, 1949, 37: 10--21. Google Scholar

[11] Zhu X, Bamler R. Very high resolution SAR tomography via compressive sensing. In: Proceedings of Fringe 2009, Frascati, 2009. 1--7. Google Scholar

[12] Budillon A, Evangelista A, Schirinzi G. SAR tomography from sparse samples. In: Proceedings of IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Cape Town, 2009. 865--868. Google Scholar

[13] Aguilera E, Nannini M, Reigber A. Wavelet-Based Compressed Sensing for SAR Tomography of Forested Areas. IEEE Trans Geosci Remote Sens, 2013, 51: 5283-5295 CrossRef ADS Google Scholar

[14] Candes E J, Tao T. Near-Optimal Signal Recovery From Random Projections: Universal Encoding Strategies?. IEEE Trans Inform Theor, 2006, 52: 5406-5425 CrossRef Google Scholar

[15] Tropp J A. Greed is Good: Algorithmic Results for Sparse Approximation. IEEE Trans Inform Theor, 2004, 50: 2231-2242 CrossRef Google Scholar

[16] Bi H, Jiang C, Zhang B, et al. Track distribution optimization for tomographic synthetic aperture radar imaging. J Sys Eng Electron, 2015, 37: 1787--1792. Google Scholar

[17] Granville V, Krivanek M, Rasson J P. Simulated annealing: a proof of convergence. IEEE Trans Pattern Anal Machine Intell, 1994, 16: 652-656 CrossRef Google Scholar

  •   

    Algorithm 1 Iterative algorithm for $L_1$ regularization reconstruction

Copyright 2020 Science China Press Co., Ltd. 《中国科学》杂志社有限责任公司 版权所有

京ICP备18024590号-1       京公网安备11010102003388号