logo

SCIENCE CHINA Information Sciences, Volume 61, Issue 2: 022305(2018) https://doi.org/10.1007/s11432-017-9084-8

Capacity improvement analysis of 3D-beamforming in small cell systems

More info
  • ReceivedJan 27, 2017
  • AcceptedFeb 27, 2017
  • PublishedAug 25, 2017

Abstract

We analyze three dimensional (3D) beamforming characteristics and applications in wireless small cell communication based on physical structure of array antenna, addressing on the 3D beampattern property of planar rectangular array antenna beamforming. Firstly, array manifold vector is formulated based on rectangular array antenna, and formulas are derived pertaining to antenna beampattern parameters in detail. Secondly, the effect of array antenna configuration on 3D beamforming is analyzed. Thirdly, 3D beamforming is extended and applied to massive MIMO small cell wireless communication scenario by analyzing capacity gain of single small cell over that of two dimensional (2D) beamforming. Numerical results are presented to show properties of the 3D beamforming.


References

[1] Zhu H, Wang J. Chunk-based resource allocation in ofdma systems — part i: chunk allocation. IEEE Trans Commun, 2009, 57: 2734--2744. Google Scholar

[2] Zhu H, Wang J. Chunk-based resource allocation in ofdma systems — part ii: joint chunk, power and bit allocation. IEEE Trans Commun, 2012, 60: 499--509. Google Scholar

[3] Zhu H. Radio resource allocation for ofdma systems in high speed environments. IEEE J Sel Areas Commun, 2012, 30: 748--759. Google Scholar

[4] Zhu H. Performance comparison between distributed antenna and microcellular systems. IEEE J Sel Areas Commun, 2011, 29: 1151--1163. Google Scholar

[5] Wang J, Zhu H, Gomes N. Distributed antenna systems for mobile communications in high speed trains. IEEE J Sel Areas Commun, 2012, 30: 675--683. Google Scholar

[6] Koppenborg J, Halbauer H, Saur S, et al. 3D beamforming trials with an active antenna array. In: Proceedings of International ITG Workshop on Smart Antennas (WSA), Dresden, 2012. 110--114. Google Scholar

[7] Xia M, Wu Y-C, Aissa S. Non-orthogonal opportunistic beamforming: performance analysis and implementation. IEEE Trans Wirel Commun, 2012, 11: 1424--1433. Google Scholar

[8] Matthaiou M, de Kerret P, Karagiannidis G, et al. Mutual information statistics and beamforming performance analysis of optimized los mimo systems. IEEE Trans Commun, 2010, 58: 3316--3329. Google Scholar

[9] Wang J, Zhu H, Dai L, et al. Low-complexity beam allocation for switched-beam based multiuser massive mimo systems. IEEE Trans Wirel Commun, 2016, 15: 8236--8248. Google Scholar

[10] Gross F B. Smart Antennas for Wireless Communications with Matlab. New Yor: McGraw-Hill Companies, Inc., 2005. Google Scholar

[11] Rashid U, Tuan H, Kha H, et al. Joint optimization of source precoding and relay beamforming in wireless mimo relay networks. IEEE Trans Commun, 2014, 62: 488--499. Google Scholar

[12] Jayasinghe P, Jayasinghe L, Juntti M, et al. Performance analysis of optimal beamforming in fixed-gain AF MIMO relaying over asymmetric fading channels. IEEE Trans Commun, 2014, 62: 1201--1217. Google Scholar

[13] Lee H, Kim S, Lee S. Combinatorial orthogonal beamforming for joint processing and transmission. IEEE Trans Commun, 2014, 62: 625--637. Google Scholar

[14] Lee G, Park J, Sung Y, et al. A new approach to beamformer design for massive mimo systems based on k-regularity. In: Proceedings of IEEE Globecom Workshops (GC Wkshps), Anaheim, 2012. 686--690. Google Scholar

[15] Roh W, Seol J-Y, Park J, et al. Millimeter-wave beamforming as an enabling technology for 5G cellular communications: theoretical feasibility and prototype results. IEEE Commun Mag, 2014, 52: 106--113. Google Scholar

[16] Wang J, Lan Z, woo Pyo C, et al. Beam codebook based beamforming protocol for multi-gbps millimeter-wave wpan systems. IEEE J Sel Areas Commun, 2009, 27: 1390--1399. Google Scholar

[17] Hur S, Kim T, Love D, et al. Millimeter wave beamforming for wireless backhaul and access in small cell networks. IEEE Trans Commun, 2013, 61: 4391--4403. Google Scholar

[18] Choi J. On coding and beamforming for large antenna arrays in mmwave systems. IEEE Wirel Commun Lett, 2014, 3: 193--196. Google Scholar

[19] Trees H V L. Optimum Array Processing. Hoboken: John Wiley and Sons, Inc, 2002. Google Scholar

[20] Hitachi America Lab. Full-dimensional mimo for future cellular networks. In: Proceedings of Wireless Systems Research Laboratory (WSRL), Michigan, 2014. Google Scholar

[21] Narasimhan T, Raviteja P, Chockalingam A. Large-scale multiuser sm-mimo versus massive mimo. In: Proceedings of Information Theory and Applications Workshop (ITA), San Diego, 2014. 1--9. Google Scholar

[22] Huh H, Caire G, Papadopoulos H, et al. Achieving “massive mimo spectral efficiency with a not-so-large number of antennas. IEEE Trans Wirel Commun, 2012, 11: 3226--3239. Google Scholar

  • Figure 1

    (Color online) 3D beamforming massive MIMO small cell system.

  • Figure 2

    (Color online) 3D beamforming system model (d_1, d_2, d_k): Distance between user and small cell.

  • Figure 3

    (Color online) Coordinates of 3D beamforming rectangular array antenna.

  • Table 1   Mainlobe and second nulls of beampattern
    (þeta_rm null) (phi_rm null) $M$ $N$
    14.48$^{\circ}$ 30$^{\circ}$ 8 8
    7.18$^{\circ}$ 14.48$^{\circ}$ 16 16
  • Table 2   Beampattern nulls in broadside
    (þeta_rm HPBW) (phi_rm HPBW) $M$ $N$
    12.71$^\circ$ 12.71$^\circ$ 8 8
    6.35$^\circ$ 6.35$^\circ$ 16 16
  • Table 3   Beampattern nulls along diagonal direction
    (þeta_rm HPBW) (phi_rm HPBW) $M$ $N$
    13.05$^\circ$ 13.05$^\circ$ 8 8
    6.51$^\circ$ 6.51$^\circ$ 16 16
  • Table 4   Beampattern nulls with $h=R$
    (βx) (βy) (þeta) (phi) $M$ $N$ (l)
    0 0 12.71$^\circ$ 12.71$^\circ$ 8 8 3.54
    0 0 6.35$^\circ$ 6.35$^\circ$ 16 16 7.08
    45$^\circ$ 45$^\circ$ 12.71$^\circ$ 12.71$^\circ$ 8 8 3.45
    45$^\circ$ 45$^\circ$ 6.35$^\circ$ 6.35$^\circ$ 16 16 6.91
  • Table 5   Beampattern nulls with $h~\neq~R$
    (βx) (βy) $M$ $N$ (h) (R) (l)
    0 0 8 8 30 90 5.63
    0 0 16 16 30 90 11.26
    45$^\circ$ 45$^\circ$ 8 8 30 90 5.48
    45$^\circ$ 45$^\circ$ 16 16 30 90 10.99
    0 0 8 8 30 900 6.93
    0 0 16 16 30 900 13.86
    45$^\circ$ 45$^\circ$ 8 8 30 900 6.75
    45$^\circ$ 45$^\circ$ 16 16 30 900 13.53

Copyright 2020 Science China Press Co., Ltd. 《中国科学》杂志社有限责任公司 版权所有

京ICP备18024590号-1