logo

SCIENCE CHINA Information Sciences, Volume 61, Issue 3: 038104(2018) https://doi.org/10.1007/s11432-017-9118-5

More permutation polynomials with differential uniformity six

More info
  • ReceivedMay 14, 2017
  • AcceptedMay 31, 2017
  • PublishedAug 25, 2017

Abstract

There is no abstract available for this article.


Acknowledgment

This work was supported by National Natural Science Foundation of China (Grant Nos. 11401172, 61672212, 61370220).


Supplement

Appendix A.


References

[1] Biham E, Shamir A. Differential cryptanalysis of DES-like cryptosystems. J Cryptol, 1991, 4: 3--72. Google Scholar

[2] Browning K, Dillon J, Kibler R, et al. APN polynomials and related codes. J Combin Inf Syst Sci, 2009, 34: 135--159. Google Scholar

[3] Browning K, Dillon J, McQuistan M, et al. An APN permutation in dimension six. In: Proceedings of the 9th Conference on Finite Fields and Applications FQ9, Dublin, 2010. 33--42. Google Scholar

[4] Bracken C, Leander G. A highly nonlinear differentially $4$ uniform power mapping that permutes fields of even degree. Finite Fields Their Appl, 2010, 16: 231--242. Google Scholar

[5] Daemen J, Rijmen V. The design of rijndael. In: AES-The Advanced Encryption Standard. Berlin: Springer-Verlag, 2002. 221--227. Google Scholar

[6] Blondeau C, Canteaut A, Charpin P. Differential properties of $x\mapsto~x^{2^t-1}$. IEEE Trans Inf Theory, 2011, 57: 8127--8137. Google Scholar

[7] Blondeau C, Perrin L. More differentially $6$-uniform power functions. Designs Codes Cryptogr, 2014, 73: 487--505. Google Scholar

[8] Cao X, Hu L, Zha Z. Constructing permutation polynomials from piecewise permutations. Finite Fields Their Appl, 2014, 26: 162--174. Google Scholar

Copyright 2019 Science China Press Co., Ltd. 《中国科学》杂志社有限责任公司 版权所有

京ICP备18024590号-1