logo

SCIENCE CHINA Information Sciences, Volume 61, Issue 3: 038101(2018) https://doi.org/10.1007/s11432-017-9123-2

Construction of rotation symmetric bent functions with maximumalgebraic degree

More info
  • ReceivedMay 22, 2017
  • AcceptedJun 2, 2017
  • PublishedAug 16, 2017

Abstract

There is no abstract available for this article.


Acknowledgment

This work was supported by National Natural Science Foundation of China (Grant Nos. 61272434, 61672330, 61602887).


References

[1] Kavut S, Maitra S, Yucel M D. Search for Boolean functions with excellent profiles in the rotation symmetric class. IEEE Trans Inf Theory, 2007, 53: 1743--1751. Google Scholar

[2] Rijmen V, Barreto P S L M, Filho D L G. Rotation symmetry in algebraically generated cryptographic substitution tables. Inf Process Lett, 2008, 106: 246--250. Google Scholar

[3] Rothaus O S. On bent functions. J Comb Theory, 1976, 20: 300--305. Google Scholar

[4] Su S H, Tang X H. On the systematic constructions of rotation symmetric bent functions with any possible algebraic degrees. Cryptology ePrint Archive, Report 2015/451, 2015. https://eprint.iacr.org/2015/451. Google Scholar

[5] Su S H, Tang X H. Systematic constructions of rotation symmetric bent functions, 2-rotation symmetric bent functions, and bent idempotent functions. IEEE Trans Inf Theory, 2017, 63: 4658--4667. Google Scholar

[6] Carlet C, Gao G P, Liu W F. Results on constructions of rotation symmetric bent and semi-bent functions. In: Sequences and Their Applications-SETA 2014. Berlin: Springer, 2014. 21--33. Google Scholar

[7] Gao G P, Zhang X Y, Liu W F, et al. Constructions of quadratic and cubic rotation symmetric bent functions. IEEE Trans Inf Theory, 2012, 58: 4908--4913. Google Scholar

[8] Carlet C, Gao G P, Liu W F. A secondary construction and a transformation on rotation symmetric functions, and their action on bent and semi-bent functions. J Comb Theory, 2014, 127: 161--175. Google Scholar

[9] Cusick T W, St$\check{\rm~~a}$nic$\check{\rm~~a}$ P. Cryptographic Boolean Functions and Applications. Oxford: Elsevier, 2017. 124--125. Google Scholar

Copyright 2020 Science China Press Co., Ltd. 《中国科学》杂志社有限责任公司 版权所有

京ICP备18024590号-1       京公网安备11010102003388号