logo

SCIENCE CHINA Information Sciences, Volume 61, Issue 2: 028102(2018) https://doi.org/10.1007/s11432-017-9154-1

Network topology inference from incomplete observation data

More info
  • ReceivedMay 23, 2017
  • AcceptedJun 29, 2017
  • PublishedDec 5, 2017

Abstract

There is no abstract available for this article.


Acknowledgment

This work was supported by National Natural Science Foundation of China (Grant No. 61572041), Beijing Natural Science Foundation (Grant No. 4152023), National High Technology Research and Development Program of China (863 Program) (Grant No. 2014AA015103).


Supplement

Appendixes A–F.


References

[1] Rodriguez M G, Leskovec J, Krause A. Inferring networks of diffusion and influence. In: Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Washington DC, 2010. 1019--1028. Google Scholar

[2] Rodriguez M G, Balduzzi D, Scholkopf B. Uncovering the temporal dynamics of diffusion networks. In: Proceedings of the 28th International Conference on Machine Learning, Bellevue, 2011. 561--568. Google Scholar

[3] Amin K, Heidari H, Kearns M. Learning from contagion (without timestamps). In: Proceedings of the 31st International Conference on Machine Learning, Beijing, 2014. 1845--1853. Google Scholar

[4] Sefer E, Kingsford C. Convex risk minimization to infer networks from probabilistic diffusion data at multiple scales. In: Proceedings of 2015 IEEE 31st International Conference, Seoul, 2015. 663--674. Google Scholar

[5] Dou P, Du S Z, Song G J. Inferring diffusion network on incomplete cascade data. In: Proceedings of the 17th International Conference on Web-Age Information Management, Nanchang, 2016. 325--337. Google Scholar

[6] Zong B, Wu Y H, Singh A K, et al. Inferring the underlying structure of information cascades. In: Proceedings of 2013 IEEE 13th International Conference on Data Mining, Brussels, 2012. 1218--1223. Google Scholar

[7] Lokhov A Y. Reconstructing parameters of spreading models from partial observations. In: Proceedings of the 29th Conference on Neural Information Processing Systems, Barcelona, 2016. 3459--3467. Google Scholar

[8] Kempe D, Kleinberg J, Tardos E. Maximizing the spread of influence through a social network. In: Proceedings of the 9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, New York, 2003. 137--146. Google Scholar

[9] Khuller S, Moss A, Naor J S. The budgeted maximum coverage problem. Inf Process Lett, 1999, 70: 39--45. Google Scholar

Copyright 2019 Science China Press Co., Ltd. 《中国科学》杂志社有限责任公司 版权所有

京ICP备18024590号-1