SCIENCE CHINA Information Sciences, Volume 61, Issue 2: 029303(2018) https://doi.org/10.1007/s11432-017-9159-y

Outage analysis of cognitive two-way relaying networks with SWIPT over Nakagami-$\boldsymbol~m$ fading channels

More info
  • ReceivedMar 28, 2017
  • AcceptedJul 3, 2017
  • PublishedSep 22, 2017


There is no abstract available for this article.


This work was supported by National Natural Science Foundation of China (Grant No. 61301111) and China Postdoctoral Science Foundation (Grant No. 2014M56074).


Appendix A.


[1] Xue Y, Zhang J, Gao X Q. Resource allocation for pilot-assisted massive MIMO transmission. Sci China Inf Sci, 2017, 60: 042302. Google Scholar

[2] Meng X, Jiang B, Gao X Q. Efficient co-channel interference suppression in MIMO-OFDM systems. Sci China Inf Sci, 2015, 58: 022301. Google Scholar

[3] Xu D, Li Q. Price-based time and energy allocation in cognitive radio multiple access networks with energy harvesting. Sci China Inf Sci, 2017, 60: 108302. Google Scholar

[4] Jiang C X, Zhang H J, Zhu H, et al. On the outage probability of information sharing in cognitive vehicular networks. In: Proceedings of IEEE International Conference on Communications, Kuala Lumpur, 2016. 1--6. Google Scholar

[5] Park S, Hong D. Achievable throughput of energy harvesting cognitive radio networks. IEEE Trans Wirel Commun, 2014, 13: 1010--1022. Google Scholar

[6] Wang Z H, Chen Z Y, Yao Y, et al. Wireless energy harvesting and information transfer in cognitive two-way relay networks. In: Proceedings of IEEE Global Communications Conference, Austin, 2014. 3465--3470. Google Scholar

[7] Wen M, Cheng X, Zhang Z, et al. BER analysis for MMSE-FDE-based interleaved SC-FDMA systems over Nakagami-$m$ fading channels. In: Proceedings of IEEE Global Communications Conference, Anaheim, 2012. 4981--4986. Google Scholar

[8] Gradshteyn I S, Ryzhik I M. Table of Integrals, Series, and Products. 7th ed. New York: Academic Press, 2007. Google Scholar

  • Figure 1

    (a) OP against the $\gamma$, when $\Omega_1=\Omega_2=\Omega_3=8$ $\mathrm{dB}$, $\eta=1$, $\lambda=0.25$, $\alpha=0.24$, and $t_S=t_D=t_C=3$. (b) OP versus $\alpha$, when $\Omega_1=\Omega_2=\Omega_3=4$ dB, $\gamma=20$ dB, $\eta=1$, $\lambda=0.65$, $t_S=t_D=3$, and $t_C=1$.

Copyright 2019 Science China Press Co., Ltd. 《中国科学》杂志社有限责任公司 版权所有