logo

SCIENCE CHINA Information Sciences, Volume 61, Issue 4: 042501(2018) https://doi.org/10.1007/s11432-017-9190-0

Quantum network communication: a discrete-time quantum-walk approach

More info
  • ReceivedMay 9, 2017
  • AcceptedJul 27, 2017
  • PublishedJan 5, 2018

Abstract

We study the problem of quantum multi-unicastcommunication over the butterfly network in a quantum-walk architecture,where multiple arbitrary single-qubit states are transmitted simultaneouslybetween multiple source-sink pairs. Here, by introducing quantum walks, wedemonstrate a quantum multi-unicast communication scheme over the butterflynetwork and the inverted crown network, respectively, where the arbitrarysingle-qubit states can be efficiently transferred with both the probabilityand the state fidelity one. The presented result concerns only the butterflynetwork and the inverted crown network, but our techniques can be applied toa more general graph. It paves a way to combine quantum computation andquantum network communication.


References

[1] Ahlswede R, Ning Cai R, Li S Y R. Network information flow. IEEE Trans Inform Theor, 2000, 46: 1204-1216 CrossRef Google Scholar

[2] Pan Z, Lei J, Zhang Y. Fast Motion Estimation Based on Content Property for Low-Complexity H.265/HEVC Encoder. IEEE Trans Broadcast, 2016, 62: 675-684 CrossRef Google Scholar

[3] Wootters W K, Zurek W H. A single quantum cannot be cloned. Nature, 1982, 299: 802-803 CrossRef ADS Google Scholar

[4] Hayashi M, Iwama K, Nishimura H, et al. Quantum network coding. In: Proceedings of Annual Symposium on Theoretical Aspects of Computer Science. Berlin: Springer, 2007. 4393: 610--621. Google Scholar

[5] Hayashi M. Prior entanglement between senders enables perfect quantum network coding with modification. Phys Rev A, 2007, 76: 040301 CrossRef ADS arXiv Google Scholar

[6] Satoh T, Le Gall F, Imai H. Quantum network coding for quantum repeaters. Phys Rev A, 2012, 86: 032331 CrossRef ADS arXiv Google Scholar

[7] Soeda A, Kinjo Y, Turner P S. Quantum computation over the butterfly network. Phys Rev A, 2011, 84: 012333 CrossRef ADS arXiv Google Scholar

[8] Li J, Chen X B, Xu G. Perfect Quantum Network Coding Independent of Classical Network Solutions. IEEE Commun Lett, 2015, 19: 115-118 CrossRef Google Scholar

[9] Li J, Chen X, Sun X. Quantum network coding for multi-unicast problem based on 2D and 3D cluster states. Sci China Inf Sci, 2016, 59: 042301 CrossRef Google Scholar

[10] Mahdian M, Bayramzadeh R. Perfect K-Pair Quantum Network Coding Using Superconducting Qubits. J Supercond Nov Magn, 2015, 28: 345-348 CrossRef Google Scholar

[11] Shang T, Li J, Pei Z. Quantum network coding for general repeater networks. Quantum Inf Process, 2015, 14: 3533-3552 CrossRef ADS Google Scholar

[12] Xu G, Chen X B, Li J. Network coding for quantum cooperative multicast. Quantum Inf Process, 2015, 14: 4297-4322 CrossRef ADS Google Scholar

[13] Shang T, Du G, Liu J. Opportunistic quantum network coding based on quantum teleportation. Quantum Inf Process, 2016, 15: 1743-1763 CrossRef ADS Google Scholar

[14] Kobayashi H, Le Gall F, Nishimura H, et al. Perfect quantum network communication protocol based on classical network coding. In: Proceedings of IEEE International Symposium on Information Theory (ISIT), Austin, 2010. 2686--2690. Google Scholar

[15] Kobayashi H, Le Gall F, Nishimura H, et al. Constructing quantum network coding schemes from classical nonlinear protocols. In: Proceedings of IEEE International Symposium on Information Theory (ISIT), St. Petersburg, 2011. 109--113. Google Scholar

[16] Jain A, Franceschetti M, Meyer D A. On quantum network coding. J Math Phys, 2011, 52: 032201-032201 CrossRef ADS Google Scholar

[17] Wang X L, Chen L K, Li W. Experimental Ten-Photon Entanglement. Phys Rev Lett, 2016, 117: 210502 CrossRef PubMed ADS arXiv Google Scholar

[18] Leung D, Oppenheim J, Winter A. Quantum Network Communication-The Butterfly and Beyond. IEEE Trans Inform Theor, 2010, 56: 3478-3490 CrossRef Google Scholar

[19] Aharonov D, Ambainis A, Kempe J, et al. Quantum walks on graphs. In: Proceedings of the 33rd ACM Symposium on Theory of Computing, Hersonissos, 2001. 50--59. Google Scholar

[20] Ambainis A. Quantum Walk Algorithm for Element Distinctness. SIAM J Comput, 2007, 37: 210-239 CrossRef Google Scholar

[21] Magniez F, Santha M, Szegedy M. Quantum Algorithms for the Triangle Problem. SIAM J Comput, 2007, 37: 413-424 CrossRef Google Scholar

[22] Tamascelli D, Zanetti L. A quantum-walk-inspired adiabatic algorithm for solving graph isomorphism problems. J Phys A-Math Theor, 2014, 47: 325302 CrossRef ADS arXiv Google Scholar

[23] Childs A M, Ge Y. Spatial search by continuous-time quantum walks on crystal lattices. Phys Rev A, 2014, 89: 052337 CrossRef ADS arXiv Google Scholar

[24] Babatunde A M, Cresser J, Twamley J. Using a biased quantum random walk as a quantum lumped element router. Phys Rev A, 2014, 90: 012339 CrossRef ADS Google Scholar

[25] Zhan X, Qin H, Bian Z. Perfect state transfer and efficient quantum routing: A discrete-time quantum-walk approach. Phys Rev A, 2014, 90: 012331 CrossRef ADS arXiv Google Scholar

[26] Yalç$\imath~$nkaya .I Gedik Z. Qubit state transfer via discrete-time quantum walks. J Phys A-Math Theor, 2015, 48: 225302. Google Scholar

[27] Travaglione B C, Milburn G J. Implementing the quantum random walk. Phys Rev A, 2002, 65: 032310 CrossRef ADS Google Scholar

[28] Tregenna B, Flanagan W, Maile R. Controlling discrete quantum walks: coins and initial states. New J Phys, 2003, 5: 83-83 CrossRef ADS Google Scholar

[29] Soeda A, Kinjo Y, Turner P S, et al. Quantum computation over the butterfly network. 2011,. arXiv Google Scholar

[30] Rohde P P, Schreiber A, ?tefa?鲸?k M. Increasing the Dimensionality of Quantum Walks Using Multiple Walkers. Jnl Comp Theo Nano, 2013, 10: 1644-1652 CrossRef Google Scholar

[31] Raussendorf R, Browne D E, Briegel H J. Measurement-based quantum computation on cluster states. Phys Rev A, 2003, 68: 022312 CrossRef ADS Google Scholar

  • Table 1   Comparison in terms of resource consumption and fidelity
    Prior entanglement Classical communication Quantum operation Average fidelity Probability
    Ref. [3] Yes Yes Yes $0.5~\le~f~\le~1$ 1
    Refs. [4,~6,~9--14] Yes Yes Yes 1 1
    Refs. [5,~15] Yes Yes Yes 1 $p~\le~1$
    Our scheme No Yes Yes 1 1

Copyright 2020 Science China Press Co., Ltd. 《中国科学》杂志社有限责任公司 版权所有

京ICP备18024590号-1