logo

SCIENCE CHINA Information Sciences, Volume 61, Issue 1: 018103(2018) https://doi.org/10.1007/s11432-017-9200-6

Robust video denoising with sparse and dense noise modelings

More info
  • ReceivedMar 22, 2017
  • AcceptedJun 21, 2017
  • PublishedNov 15, 2017

Abstract

There is no abstract available for this article.


Acknowledgment

This work was supported by National Natural Science Foundation of China (Grant No. 61303168). The authors also thank the support by Youth Innovation Promotion Association CAS.


Supplement

Appendixes A and B.


References

[1] Boracchi G, Foi A, Egiazarian K. Video denoising using separable 4D nonlocal spatiotemporal transforms. Int Soc Opt Eng, 2011, 7870: 1--12. Google Scholar

[2] Sorel M, Bartos M. Fast Bayesian JPEG decompression and denoising with tight frame priors. IEEE Trans Image Process, 2016, 26: 490--501. Google Scholar

[3] Ji H, Liu C Q, Shen Z W, et al. Robust video denoising using low rank matrix completion. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), San Francisco, 2010. 1791--1798. Google Scholar

[4] Meng D Y, Fernando D L T. Robust matrix factorization with unknown noise. In: Proceedings of IEEE International Conference on Computer Vision, Sydney, 2013. 1337--1344. Google Scholar

[5] Cao X Y, Chen Y, Zhao Q, et al. Low-rank matrix factorization under general mixture noise distributions. In: Proceedings of IEEE International Conference on Computer Vision, Santiago, 2015. 1493--1501. Google Scholar

[6] Wright J, Peng Y G, Ma Y, et al. Robust principal component analysis: exact recovery of corrupted low-rank matrices by convex optimization. In: Proceedings of the 22nd International Conference on Neural Information Processing Systems, Vancouver, 2009. 2080--2088. Google Scholar

[7] Okutomi M, Yan S, Sugimoto S, et al. Practical low-rank matrix approximation under robust L1-norm. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Providence, 2012. 1410--1417. Google Scholar

[8] Shen G P, Han Z, Tang Y D. Robust video denoising by low-rank decomposition and modeling noises with mixture of Gaussian. In: Proceedings of IEEE International Conference on Robotics and Biomimetics (ROBIO), Bali, 2014. 2226--2231. Google Scholar

[9] Gu S H, Zhang L, Zuo W M, et al. Weighted Nuclear Norm Minimization with Application to Image Denoising. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Columbus, 2014. 2862--2869. Google Scholar

  • Figure 1

    (Color online) Experiments on videos with mixed noise: Gaussian noise variance ($\delta_1=20$), Poisson noise parameter ($p=10$), salt and pepper(10%). In each group, the upper line and the lower line correspond to global and detailed (zoomed-in) results, respectively.

Copyright 2019 Science China Press Co., Ltd. 《中国科学》杂志社有限责任公司 版权所有

京ICP备18024590号-1