SCIENCE CHINA Information Sciences, Volume 61, Issue 9: 092204(2018) https://doi.org/10.1007/s11432-017-9213-9

A transfer alignment method for airborne distributed POS with three-dimensional aircraft flexure angles

More info
  • ReceivedJun 14, 2017
  • AcceptedJul 20, 2017
  • PublishedJan 3, 2018


An airborne distributed position and orientation system (POS) appears to satisfy the requirement of multi-point motion parameters measurement. This relies on transfer alignment from a high precision master system to slave systems to obtain high accuracy motion parameters of all points. A key problem for a distributed POS involves determining a method to treat the aircraft flexure appropriately and achieve high precision transfer alignment. In this study, the effect of aircraft flexure on transfer alignment accuracy for airborne earth observation is first analyzed. Based on this, the error model of transfer alignment that considers three-dimensional flexure angles are established, and a transfer alignment based on parameter identification unscented Rauch-Tung-Striebel smoother (PIURTSS) is proposed. The simulations results show that the transfer alignment method based on PIURTSS effectively improves the estimation accuracy.


This work was supported in part by National Natural Science Foundation of China (Grant Nos. 61473020, 61421063, 61233005), National High Technology Research and Development Program of China (863 Program) (Grant Nos. 2015AA124001, 2015AA124002), and International (Regional) Cooperation and Communication Project (Grant No. 61661136007).


[1] Xu W, Deng Y K, Wang R. Multichannel synthetic aperture radar systems with a planar antenna for future spaceborne microwave remote sensing. IEEE Aerosp Electron Syst Mag, 2012, 27: 26--30. Google Scholar

[2] Scherbaum P, Brauchle J, Kraft T, et al. MACS-Mar — a real-time capable multisensor remote sensing system for maritime applications. In: Proceedings of IEEE International Conference on Aerospace Electronics and Remote Sensing Technology, Bali, 2015. Google Scholar

[3] Chen N C, Pu F L, Hu C L, et al. Scientific issues and progress of the chinese integrated earth observation sensor web project. In: Proceedings of IEEE International Conference on Systems, Man, and Cybernetics, Manchester, 2013. 1058--1062. Google Scholar

[4] Mostafa M M R, Hutton J. Direct positioning and orientation systems: how do they work? What is the attainable accuracy? In: Proceedings of American Society of Photogrammetry and Remote Sensing Annual Meeting, St. Louis, 2001. Google Scholar

[5] Nagai M, Tianen Chen M, Shibasaki R. UAV-Borne 3-D Mapping System by Multisensor Integration. IEEE Trans Geosci Remote Sens, 2009, 47: 701-708 CrossRef ADS Google Scholar

[6] Siying C, Hongchao M, Yinchao Z. Boresight Calibration of Airborne LiDAR System Without Ground Control Points. IEEE Geosci Remote Sens Lett, 2012, 9: 85-89 CrossRef ADS Google Scholar

[7] Quan W, Li J L, Gong X L, et al. INS/CNS/GNSS Integrated Navigation Technology. Beijing: National Industry Press, 2015. Google Scholar

[8] Huang P P, Tan W X, Su Y. MIMO-SAR imaging technology for helicopter-borne based on ARC antenna array. In: Proceedings of IEEE International Geoscience and Remote Sensing Symposium, Milan, 2015. 1801--1804. Google Scholar

[9] Yan X G, Spurgeon S K, Edwards C. State and Parameter Estimation for Nonlinear Delay Systems Using Sliding Mode Techniques. IEEE Trans Automat Contr, 2013, 58: 1023-1029 CrossRef Google Scholar

[10] Yan X G, Lam J, Xie L. Robust observer design for non-linear interconnected systems using structural characteristics. Int J Control, 2003, 76: 741-746 CrossRef Google Scholar

[11] Mochalov A V, Kazantasev A V. Use of ring laser units for measurement of the moving object deformations. In: Proceedings of the 2nd International Conference on Lasers Measurement and Information Transfer, St. Petersburg, 2002. 85--92. Google Scholar

[12] Groves P D. Optimising the transfer alignment of weapon INS. J Navigation. 2003, 56: 323--335. Google Scholar

[13] Kain J, Cloutier J. Rapid transfer alignment for tactical weapon application. In: Proceedings of AIAA Guidance, Navigation and Control Conference, Boston, 1989. 1290--1300. Google Scholar

[14] Spalding K. An efficient rapid transfer alignment filter. In: Proceedings of AIAA Guidance, Navigation and Control Conference, Hilton Head Island, 1992. 1276--1286. Google Scholar

[15] Yan Z P, Lan J, Zhang Y C. Hybrid-system-based multiple-model approach for transfer alignment with dynamic flexure in IIN. In: Proceedings of International Conference on Multisensor Fusion and Information Integration for Intelligent Systems, Beijing, 2014. 1--8. Google Scholar

[16] Gebre-Egziabher D, Shao Y. Model for JPALS/SRGPS Flexure and Attitude Error Allocation. IEEE Trans Aerosp Electron Syst, 2010, 46: 483-495 CrossRef ADS Google Scholar

[17] Gao Q W, Zhao G R, Wang X B. Transfer alignment error compensator design for flexure and lever-arm effect. In: Proceedings of the 4th IEEE Conference on Industrial Electronics and Applications, Xi'an, 2009. 1819--1822. Google Scholar

[18] Wei Wu , Sheng Chen , Shiqiao Qin . Online Estimation of Ship Dynamic Flexure Model Parameters for Transfer Alignment. IEEE Trans Contr Syst Technol, 2013, 21: 1666-1678 CrossRef Google Scholar

[19] Gong X, Fan W, Fang J. An innovational transfer alignment method based on parameter identification UKF for airborne distributed POS. Measurement, 2014, 58: 103-114 CrossRef Google Scholar

[20] Fearnhead P, Wyncoll D, Tawn J. A sequential smoothing algorithm with linear computational cost. Biometrika, 2010, 97: 447-464 CrossRef Google Scholar

[21] Meditch J S. A survey of data smoothing for linear and nonlinear dynamic systems. Automatica, 1973, 9: 151-162 CrossRef Google Scholar

[22] Simon D. Optimal State Estimation, Kalman, H$^\infty$ and Nonlinear Approaches. New Jersey: John Wiley and Sons, 2006. Google Scholar

[23] S?rkk? S. Unscented Rauch--Tung--Striebel Smoother. IEEE Trans Automat Contr, 2008, 53: 845-849 CrossRef Google Scholar

[24] Titterton D, Weston J. Strapdown Inertial Navigation Technology. 2nd ed. London: Institution of Engineering and Technology, 2004. Google Scholar

[25] Bekir E. Introduction to Modern Navigation Systems. Singapore: World Scientific, 2007. Google Scholar

[26] Goshen-meskin D, Bar-itzhack I Y. Unified approach to inertial navigation system error modeling. J Guidance Control Dyn, 1992, 15: 648-653 CrossRef ADS Google Scholar

[27] Zhang H T, Rong J, Zhong X C. The performance comparison and algorithm analysis of first order EKF, second order EKF and smoother for GPS/DR navigation. In: Proceedings of IEEE International Conference on Communication Technology, Hangzhou, 2008. 432--437. Google Scholar

[28] Allerton D, Jia H. Redundant multi-mode filter for a navigation system. IEEE Trans Aerosp Electron Syst, 2007, 43: 371-391 CrossRef ADS Google Scholar

[29] Lu Y, Cheng X. Random misalignment and lever arm vector online estimation in shipborne aircraft transfer alignment. Measurement, 2014, 47: 756-764 CrossRef Google Scholar

  • Figure 1

    (Color online) $x$ and $z$ axes flexure angles.

  • Figure 4

    (Color online) $y$ axis flexure angle rate.

  • Figure 5

    (Color online) Flight trajectory.

  • Figure 6

    (Color online) Attitude estimate errors in cases 3.1 and 3.2. (a) Heading estimate error; (b) pitch estimate error; (c) roll estimate error.

  • Figure 9

    (Color online) Baseline estimate errors in cases 3.1 and 3.2.

  • Figure 10

    (Color online) Baseline estimate errors in cases 6.1 and 6.2.

  • Figure 13

    (Color online) Position estimate errors in cases 6.1 and 6.2. (a) Latitude estimate error; (b) longitude estimate error; (c) height estimate error.

  • Table 1   Parameter setting for simulation trajectory
    Time (s) Motion state
    0–100 Uniform flight
    100–200 Turns 60$^\circ$ clockwise
    200–300 Turns 60$^\circ$ anti-clockwise
    300–700 Uniform flight
    700–900 Turns 180$^\circ$ clockwise
    900–1300 Uniform flight
  • Table 2   Other parameters setting for the simulation
    Heading error $0.005~^{\circ}$ (1 $\sigma$)
    Main POSPitch and roll error $0.0025~^{\circ}$ (1 $\sigma$)
    Velocity error 0.005 m/s (1 $\sigma$)
    Gyro constant drift and random drift $0.1~^{\circ}$/h
    Sub-IMUAccelerometer constant bias and random bias 50 ug
    Misalignment angle (three axes) $0.5~^{\circ}$
    Output frequency of sub-IMU100 Hz
    Lever arm between the main POS$x$ axis 5 m
    and sub-IMU (in the body frame of main POS)$y$ and $z$ axes 0.1 m
    Filter frequency1 Hz
    Initial attitude errors of heading, pitch, and roll$10~^{\circ}$
  • Table 3   RMS and STD of estimate errors in cases 3.1 and 3.2
    ParameterCase 3.1Case 3.2
    $x$ axis($^{\prime}$) 0.1017 1.31E$-$12 0.3792 1.53E$-$12
    Misalignment angle $y$ axis ($^{\prime}$)1.5423 1.17E$-$11 7.3382 7.31E$-$11
    $z$ axis ($^{\prime}$) 0.5053 1.47E$-$12 0.46261.57E$-$12
    Flexure angle $y$ axis ($^{\prime}$) 1.6511 0.3808 7.4787 0.3771
    Heading ($^{\circ}$)0.0133 0.0058 0.0099 0.0082
    Attitude error Pitch ($^{\circ}$) 0.0047 0.0046 0.0083 0.0062
    Roll ($^{\circ}$) 0.0060 0.0059 0.0063 0.0059
    East (m/s) 0.0017 0.0017 0.0019 0.0018
    Velocity error North (m/s) 0.0020 0.0020 0.0022 0.0022
    Up (m/s) 0.0127 0.0125 0.0127 0.0125
    Latitude (mm) 50.7112 50.7567 52.6750 52.6403
    Position error Longitude (mm) 48.0994 48.3854 49.2666 49.2869
    Height (mm) 100.5188 100.4975 100.5968 100.4600
    Baseline error (mm)0.0392 0.0227 0.1119 0.1051
  • Table 4   RMS and STD of estimate errors in cases 6.1 and 6.2
    ParameterCase 6.1Case 6.2
    $x$ axis ($^{\prime}$) 2.9487 1.21E$-$9 0.1960 8.21E$-$12
    Misalignment angley axis ($^{\prime}$) 3.8132 1.71E$-$12 5.2780 1.40E$-$12
    $z$ axis ($^{\prime}$) 22.8548 1.79E$-$9 1.5278 4.17E$-$12
    $x$ axis($^{\prime}$) 3.0077 0.3145 0.3406 0.2263
    Flexure angley axis ($^{\prime}$) 5.2365 0.3789 3.8173 0.2834
    $z$ axis ($^{\prime}$) 24.7452 0.6068 0.7972 0.5060
    Heading ($^{\circ}$) 0.0092 0.0083 0.0088 0.0081
    Attitude error Pitch ($^{\circ}$) 0.0047 0.0046 0.0047 0.0046
    Roll ($^{\circ}$) 0.0059 0.0059 0.0059 0.0059
    East (m/s) 0.0019 0.0018 0.0018 0.0018
    Velocity error North (m/s) 0.00220.0022 0.0022 0.0022
    Up (m/s) 0.0126 0.0125 0.0126 0.0125
    Latitude (mm) 57.1572 50.6202 50.1713 50.1470
    Position error Longitude (mm) 53.8477 50.7776 50.7738 50.7741
    Height (mm) 101.1149 100.1367 100.3627 100.0633
    Baseline error (mm)0.0837 0.0735 0.0495 0.0319

Copyright 2020 Science China Press Co., Ltd. 《中国科学》杂志社有限责任公司 版权所有

京ICP备18024590号-1       京公网安备11010102003388号