logo

SCIENCE CHINA Information Sciences, Volume 61, Issue 9: 099101(2018) https://doi.org/10.1007/s11432-017-9214-8

Small sample learning with high order contractive auto-encoders and application in SAR images

Qianwen YANG1,2,3, Fuchun SUN1,2,3,*
More info
  • ReceivedApr 25, 2017
  • AcceptedAug 16, 2017
  • PublishedMay 3, 2018

Abstract

There is no abstract available for this article.


Supplement

Appendixes A–C.


References

[1] Bengio Y, Courville A, Vincent P. Representation learning: a review and new perspectives.. IEEE Trans Pattern Anal Mach Intell, 2013, 35: 1798-1828 CrossRef PubMed Google Scholar

[2] Alain G, Bengio Y. What regularized auto-encoders learn from the data-generating distribution. J Mach Learn Res, 2014, 15: 3563--3593. Google Scholar

[3] Rifai S, Vincent P, Muller X, et al. Contractive auto-encoders: explicit invariance during feature extraction. In: Proceedings of International Conference on Machine Learning (ICML), Bellevue, 2011. Google Scholar

[4] Evgeniou T, Poggio T, Pontil M. Regularization and statistical learning theory for data analysis. Comput Stat Data Anal, 2002, 38: 421-432 CrossRef Google Scholar

[5] Liu H, Yu Y, Sun F. Visual-Tactile Fusion for Object Recognition. IEEE Trans Automat Sci Eng, 2017, 14: 996-1008 CrossRef Google Scholar

[6] Liu H, Liu Y, Sun F. Robust Exemplar Extraction Using Structured Sparse Coding.. IEEE Trans Neural Netw Learning Syst, 2015, 26: 1816-1821 CrossRef PubMed Google Scholar

[7] Vincent P, Larochelle H, Bengio Y, et al. Extracting and composing robust features with denoising autoencoders. In: Proceedings of the 25th International Conference on Machine Learning (ICML), Helsinki, 2008. 1096--1103. Google Scholar

[8] Kamyshanska H, Memisevic R. The Potential Energy of an Autoencoder.. IEEE Trans Pattern Anal Mach Intell, 2015, 37: 1261-1273 CrossRef PubMed Google Scholar

[9] Rifai S, Mesnil G, Vincent P, et al. Higher order contractive auto-encoder. In: Proceedings of Joint European Conference on Machine Learning and Knowledge Discovery in Databases (ECML PKDD), Athens, 2011. 645--660. Google Scholar

Copyright 2019 Science China Press Co., Ltd. 《中国科学》杂志社有限责任公司 版权所有

京ICP备18024590号-1