logo

SCIENCE CHINA Information Sciences, Volume 61, Issue 4: 049103(2018) https://doi.org/10.1007/s11432-017-9246-3

Visible and infrared image fusion using $~\ell_{0}$-generalized total variation model

More info
  • ReceivedMay 29, 2017
  • AcceptedSep 19, 2017
  • PublishedMar 5, 2018

Abstract

There is no abstract available for this article.


Acknowledgment

This work was jointly supported by National Natural Science Foundation of China (Grant Nos. 61603249, 61673262, 61690210, 61690212), and Key Project of Science and Technology Commission of Shanghai Municipality (Grant No. 16JC1401100).


Supplement

Fusion results on three datasets (Figures B2, B4, and B6 in Appendix B; Tables B1–B9 in Appendix B), detailed algorithm (Algorithm C1 in Appendix C), and extensive discussions on parameters setting (Appendix A).


References

[1] Yun X, Jing Z L, Xiao G, et al. A compressive tracking based on time-space Kalman fusion model. Sci China Inf Sci, 2016, 59: 012106. Google Scholar

[2] Toet A. Image fusion by a ratio of low-pass pyramid. Pattern Recognition Lett, 1989, 9: 245-253 CrossRef Google Scholar

[3] Da Cunha A L, Zhou J P, Do M N. The nonsubsampled contourlet transform: theory, design, and applications. IEEE Trans Image Process, 2006, 15:łinebreak 3089--3101. Google Scholar

[4] Nencini F, Garzelli A, Baronti S. Remote sensing image fusion using the curvelet transform. Inf Fusion, 2007, 8: 143-156 CrossRef Google Scholar

[5] Ma J, Chen C, Li C. Infrared and visible image fusion via gradient transfer and total variation minimization. Inf Fusion, 2016, 31: 100-109 CrossRef Google Scholar

[6] Jie Y, Lu W S. Compressive imaging by generalized total variation minimization. In: Proceedings of 2014 IEEE Asia Pacific Conference on Circuits and Systems (APCCAS), Ishigaki, 2014. 21--24. Google Scholar

[7] Feng M B, Mitchell J E, Pang J S, et al. Complementarity formulations of $~\ell_{0}~$ norm optimization problems. 2013. http://www.optimization-online.org/DB_FILE/2013/09/4053.pdf. Google Scholar

[8] Yuan G Z, Ghanem B. A proximal alternating direction method for semi-definite rank minimization. In: Proceedings of the 30th AAAI Conference on Artificial Intelligence (AAAI-16), Phoenix, 2016. 2300--2308. Google Scholar

[9] Xydeas C S, Petrovic? V. Objective image fusion performance measure. Electron Lett, 2000, 36: 308-309 CrossRef Google Scholar

Copyright 2020 Science China Press Co., Ltd. 《中国科学》杂志社有限责任公司 版权所有

京ICP备18024590号-1       京公网安备11010102003388号