logo

SCIENCE CHINA Information Sciences, Volume 61, Issue 2: 021301(2018) https://doi.org/10.1007/s11432-017-9262-8

mmWave communications for 5G: implementation challenges and advances

More info
  • ReceivedJul 10, 2017
  • AcceptedAug 22, 2017
  • PublishedJan 2, 2018

Abstract

The requirement of the fifth generation (5G) wireless communication for high throughput motivates the wireless industry to use the mmWave (millimeter wave) communications for its wide bandwidth advantage. To compensate the heavy path loss and increase the communications capacity, phased array beamforming and massive multiple-input multiple-output (MIMO) techniques are employed at both the user equipment (UE) and base stations (BS). Considering the commercial requirements, 5G mmWave large array systems should be implemented in an energy- and cost-efficient way with a small form factor. To address above issues and realize a reliable communications link, taking into account the particular characteristics of 5G mmWave systems, this paper firstly examines the design challenges and trade-offs in system implementations, then some of the design strategies are summarized. At last, recent advance in RF front-end circuits and receiver sub-systems is then highlighted.


Acknowledgment

This work was supported by National High-Tech Project (863) of China (Grant Nos. 2011AA010201, 2011AA010202), National Nature Science Foundation of China (Grant Nos. 61306030, 61674037), National Key R&D Program of China (Grant No. 2016YFC0800400), and Fundamental Research Funds for the Central Universities.


References

[1] Cui Q M, Gu Y, Ni W, et al. Effective capacity of licensed-assisted access in unlicensed spectrum for 5G: from theory to application. IEEE J Sel Area Commun, 2017, 35: 1754--1767. Google Scholar

[2] Rappaport T S, Sun S, Mayzus R, et al. Millimeter wave mobile communications for 5G cellular: it will work. IEEE Access, 2013, 1: 335--349. Google Scholar

[3] Ericsson white paper. 5G radio access. 2016. http://www.ericsson.com/assets/local/publications/white-papers/wp-5g.pdf. Google Scholar

[4] Onoe S. Evolution of 5G mobile technology toward 2020 and beyond. In: Proceedings of IEEE International Solid-State Circuit Conference, San Francisco, 2016. Google Scholar

[5] Poon A S, Taghivand M. Supporting and enabling circuits for antenna arrays in wireless communications. Proc IEEE, 2012, 100: 2207--2218. Google Scholar

[6] Gao X Y, Dai L L, Han S F, et al. Energy-efficient hybrid analog and digital precoding for mmWave MIMO systems with large antenna arrays. IEEE J Sel Area Commun, 2016, 34: 998--1008. Google Scholar

[7] Gao L, Zhang S, Liu Z Y, et al. An overview of multi-antenna technologies for space-ground integrated networks. Sci China Inf Sci, 2016, 59: 121301. Google Scholar

[8] Wang C X, Wu S B, Bai L, et al. Recent advances and future challenges for massive MIMO channel measurements and models. Sci China Inf Sci, 2016, 59: 021301. Google Scholar

[9] Roh W, Seol J, Park J, et al. Millimeter-wave beamforming as an enabling technology for 5G cellular communications: theoretical feasibility and prototype results. IEEE Commun Mag, 2014, 52: 106--113. Google Scholar

[10] Vook F, Ghosh A, Thomas T. MIMO and bemaforming solutions for 5G technology. In: Proceedings of IEEE MTT-S International Microwave Symposium, Tampa, 2014. Google Scholar

[11] Li L M, Niu X K, Chai Y, et al. The path to 5G: mmWave aspects. J Commun Inf Netw, 2016, 2: 1--18. Google Scholar

[12] Boers M, Afshar B, Vassiliou I, et al. A 16TX/RX 60 GHz 802.11ad chipset with single coaxial interface and polarization diversity. IEEE J Solid-State Circ, 2014, 2: 344--345. Google Scholar

[13] Sadhu B, Tousi Y, Hallin J, et al. A 28 GHz 32-elements phased-array transceiver IC with concurrent dual polarized beams and 1.4 degree beam-steering resolution for 5G communication. ISSCC Dig Tech Pap, 2014, 2: 128--129. Google Scholar

[14] Li L M, Niu X K, Chen L H, et al. Design of 60 GHz RF transceiver in CMOS: challenges and recent advances. China Commun, 2014, 11: 32--41. Google Scholar

[15] Hu S, Wang F, Wang H. A 28GHz/37GHz/39GHz multiband linear Doherty power amplifier for 5G massive MIMO applications. In: Proceedings of IEEE International Solid-State Circuit Conference, San Francisco, 2017. Google Scholar

[16] Kim S, Rebeiz G. A low-power BiCMOS 4-element phased array receiver for 76-84 GHz radars and communication systems. IEEE J Solid-State Circ, 2012, 47: 359--367. Google Scholar

[17] Niknejad A. mm-Wave phased array receivers. RF Blocks for Wireless Transceiver, ISSCC Short Course, 2013. Google Scholar

[18] Paramesh J, Bishop R, Soumyanath K, et al. A four-antenna cartesian-combining receiver in 90 nm CMOS. IEEE J Solid-State Circ, 2005, 40: 2515--2524. Google Scholar

[19] Heij W, Muskens H. Multi-channel receiver and optical data link for radar systems with digital beamforming. In: Proceeding of International Radar Conference, Alexandria, 1995. Google Scholar

[20] Emami S, Wiser R F, Ali E, et al. A 60 GHz CMOS phase-array transceiver pair for multi-Gb/s wireless communication. In: Proceedings of IEEE International Solid-State Circuits Conference, San Francisco, 2011. Google Scholar

[21] Okada K, Kondou K, Miyahara M, et al. Full four-channel 6.3 Gb/s 60 GHz direct-conversion transceiver with low-power analog and digital baseband circuitry. In: Proceedings of IEEE International Solid-State Circuits Conference, San Francisco, 2012. Google Scholar

[22] El Ayach O, Rajagopal S, Abu-Surra S, et al. Spatially sparse precoding in millimeter wave MIMO systems. IEEE Trans Wirel Commun, 2014, 13: 1499--1513. Google Scholar

[23] Rusu C, Mèndez-Rial R, Gonzalez-Prelcic N, et al. Low complexity hybrid precoding strategies for millimeter wave communication systems. IEEE Trans Wirel Commun, 2014, 13: 1499--1513. Google Scholar

[24] Yu X H, Shen J C, Zhang J, et al. Alternating minimization algorithms for hybrid precoding in millimeter wave MIMO systems. IEEE J Sel Top Signal Process, 2016, 10: 485--500. Google Scholar

[25] Gao X Y, Dai L L, Han S F, et al. Energy-efficient hybrid analog and digital precoding for mmWave MIMO systems with large antenna arrays. IEEE J Sel Area Commun, 2016, 34: 998--1009. Google Scholar

[26] Li J H, Xiao L M, Xu X B, et al. Energy-efficient Butler-matrix-based hybrid beamforming for multiuser mmWave MIMO system. Sci China Inf Sci, 2017, 60: 080304. Google Scholar

[27] Alkhateeb A, Leus G, Heath R W. Limited feedback hybrid precoding for multi-user millimeter wave systems. IEEE Trans Wirel Commun, 2015, 14: 6481--6494. Google Scholar

[28] Ni W H, Dong X D. Hybrid block diagonalization for massive multiuser MIMO systems. IEEE Trans Commun, 2016, 64: 201--211. Google Scholar

[29] Zhang X Y, Molisch A F, Kung S Y. Variable-phase-shift-based RF-baseband codesign for MIMO antenna selection. IEEE Trans Signal Process, 2005, 53: 4091--4103. Google Scholar

[30] Sohrabi F, Yu W. Hybrid digital and analog beamforming design for large-scale antenna arrays. IEEE J Sel Top Signal Process, 2016, 10: 501--513. Google Scholar

[31] Sohrabi F, Yu W. Hybrid analog and digital beamforming for mmWave OFDM large-scale antenna arrays. IEEE J Sel Area Commun, 2017, 35: 1432--1443. Google Scholar

[32] Zhang J h, Tang P, Tian L, et al. 6--100 GHz research progress and challenges from a channel perspective for fifth generation (5G) and future wireless communication. Sci China Inf Sci, 2017, 60: 080301. Google Scholar

[33] Adhikary A, Al Safadi E, Samimi M K, et al. Joint spatial division and multiplexing for mm-Wave channels. IEEE J Sel Area Commun, 2014, 32: 1239--1255. Google Scholar

[34] Cheng X T, Luo Z Q. Compensation of transmitter I/Q imbalance in millimeter-Wave SC-FDE systems. IEEE Trans Veh Technol, 2017, 66: 4472--4476. Google Scholar

[35] Chen X M, Fang C, Zou Y N, et al. Beamforming MIMO-OFDM systems in the presence of phase noises at millimeter-Wave frequencies. In: Proceedings of IEEE Wireless Communications and Networking Conference Workshops (WCNCW), San Francisco, 2017. Google Scholar

[36] Bazzi S, Xu W. Robust Bayesian precoding for mitigation of TDD hardware calibration errors. IEEE Signal Process Lett, 2016, 23: 929--933. Google Scholar

[37] Xia P F, Heath R W, Gonzalez-Prelcic N. Robust analog precoding designs for millimeter wave MIMO transceivers with frequency and time division duplexing. IEEE Trans Commun, 2016, 64: 4622--4634. Google Scholar

[38] Heath R W, Gonzalez-Prelcic N, Rangan S, et al. An overview of signal processing techniques for millimeter wave MIMO systems. IEEE J Sel Top Signal Process, 2016, 10: 436--453. Google Scholar

[39] Hur S, Kim T, Love D J, et al. Millimeter wave beamforming for wireless backhaul and access in small cell networks. IEEE Trans Commun, 2013, 61: 4391--4403. Google Scholar

[40] Alkhateeb A, El Ayach O, Leus G, et al. Channel estimation and hybrid precoding for millimeter wave cellular systems. IEEE J Sel Top Signal Process, 2014, 8: 831--846. Google Scholar

[41] Xiao Z Y, Xia P F, Xia X G. Codebook design for millimeter-wave channel estimation with hybrid precoding structure. IEEE Trans Wirel Commun, 2017, 16: 141--153. Google Scholar

[42] Kokshoorn M, Chen H, Wang P, et al. Millimeter wave MIMO channel estimation using overlapped beam patterns and rate adaptation. IEEE Trans Signal Process, 2017, 65: 601--616. Google Scholar

[43] Ghauch H, Kim T, Bengtsson M, et al. Subspace estimation and decomposition for large millimeter-wave MIMO systems. IEEE J Sel Top Signal Process, 2016, 10: 528--542. Google Scholar

[44] Lee J, Gil G T, Lee Y H. Channel estimation via orthogonal matching pursuit for hybrid MIMO systems in millimeter wave communications. IEEE Trans Commun, 2016, 64: 2370--2386. Google Scholar

[45] Swindlehurst A L, Ayanoglu E, Heydari P, et al. Millimeter-wave massive MIMO: the next wireless revolution? IEEE Commun Mag, 2014, 52: 56--62. Google Scholar

[46] Alkhateeby A, Leusz G, Heath R W. Compressed sensing based multi-user millimeter wave systems: how many measurements are needed? In: Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Brisbane, 2015. 2909--2913. Google Scholar

[47] Kokshoorn M, Chen H, Li Y H, et al. Beam-On-Graph: simultaneous channel estimation in multi-user millimeter wave MIMO systems. ArXiv Preprint,. arXiv Google Scholar

[48] Rangan S. Generalized approximate message passing for estimation with random linear mixing. In: Proceedings of IEEE International Symposium on Information Theory Proceedings, St. Petersburg, 2011. 2168--2172. Google Scholar

[49] Gao Z, Hu C, Dai L L, et al. Channel estimation for millimeter-wave massive MIMO with hybrid precoding over frequency-selective fading channels. IEEE Commun Lett, 2016, 20: 1259--1262. Google Scholar

[50] Zhou Z, Fang J, Yang L X, et al. Channel estimation for millimeter-wave multiuser MIMO systems via PARAFAC decomposition. IEEE Trans Wirel Commun, 2016, 15: 7501--7516. Google Scholar

[51] Zhou Z, Fang J, Yang L X, et al. Low-rank tensor decomposition-aided channel estimation for millimeter wave MIMO-OFDM systems. IEEE J Sel Area Commun, 2017, 35: 1524--1538. Google Scholar

[52] Bogale T E, Le L B, Haghighat A, et al. On the number of RF chains and phase shifters, and scheduling design with hybrid analog-digital beamforming. IEEE Trans Wirel Commun, 2016, 15: 3311--3326. Google Scholar

[53] Bogale T E, Le L B, Wang X B. Hybrid analog-digital channel estimation and beamforming: training-throughput tradeoff. IEEE Trans Commun, 2015, 63: 5235--5249. Google Scholar

[54] Hur S, Baek S, Kim B, et al. Proposal on millimeter-wave channel modeling for 5G cellular system. IEEE J Sel Top Signal Process, 2016, 10: 454--469. Google Scholar

[55] Zhao L, Ng D W K, Yuan J H. Multi-user precoding and channel estimation for hybrid millimeter wave systems. IEEE J Sel Area Commun, 2017, 35: 1576--1590. Google Scholar

[56] Shafin R, Liu L J, Zhang J Z, et al. DoA estimation and capacity analysis for 3-D millimeter wave massive-MIMO/FD-MIMO OFDM systems. IEEE Trans Wirel Commun, 2016, 15: 6963--6978. Google Scholar

[57] Zhu G X, Huang K, Lau V K N, et al. Hybrid beamforming via the kronecker decomposition for the millimeter-Wave massive MIMO systems. ArXiv Preprint,. arXiv Google Scholar

[58] Palacios J, De Donno D, Widmer J. Tracking mm-Wave channel dynamics: fast beam training strategies under mobility. ArXiv Preprint,. arXiv Google Scholar

[59] Bae J, Lim S H, Yoo J H, et al. New beam tracking technique for millimeter wave-band communications. ArXiv Preprint,. arXiv Google Scholar

[60] Guo Y C, Tang J L, Wu G, et al. Power allocation for massive MIMO: impact of power amplifier efficiency. Sci China Inf Sci, 2016, 59: 022301. Google Scholar

[61] Chen L H, Li L M, Cui T J. A 1 V 18 dBm 60 GHz power amplifier with 24 dB gain in 65 nm LP CMOS. In: Proceedings of Asia Pacific Microwave Conference, Kaohsiung, 2012. 13--15. Google Scholar

[62] Floyd B. A 16--18.8 GHz sub-integer-N frequency synthesizer for 60 GHz transceiver. IEEE J Solid-State Circ, 2012, 43: 1076--1086. Google Scholar

[63] Li L M, Reynaert P, Steyaert M. Design and analysis of a 90 nm mm-Wave oscillator using inductive-division LC tank. IEEE J Solid-State Circ, 2009, 44: 1950--1958. Google Scholar

[64] Niu X K, Li L M, Wang D M. A 50 GHz VCO in 65 nm LP CMOS for mm-Wave applications. In: Proceedings of the 13th IEEE International Conference on Solid-State and Integrated Circuit Technology, Hangzhou, 2016. Google Scholar

[65] Mirzaei A, Heidari M, Bagheri R, et al. The quadrature LC oscillators: a complete portrait on injection locking. IEEE J Solid-State Circ, 2007, 42: 1916--1932. Google Scholar

[66] Miller R L. Fractional-frequency generators utilizing regenerative modulation. Proc IRE, 1939, 27: 446--457. Google Scholar

[67] Niu X K, Li L M, Wang D M. A compact wide-locking range divide-by-4 static divider for mm-Wave applications. In: Proceedings of Global Symposium on Millimeter Waves (GSMM) & ESA Workshop on Millimetre-Wave Technology and Applications, Espoo, 2016. Google Scholar

[68] Chai Y, Li L M, Zhao D X, et al. A 20-to-75 dB gain 5 dB noise figure broadband 60 GHz receiver with digital calibration. In: Proceedings of IEEE International Symposium on Radio-Frequency Integration Technology (RFIT), Taipei, 2016. Google Scholar

[69] Chai Y, Niu X K, He L, et al. A 60-GHz CMOS broadband receiver with digital calibration, 20-to-75-dB gain, and 5-dB noise figure. IEEE Trans Microw Theory Tech, 2017, 65: 3989--4001. Google Scholar

[70] Okada K, Li N, Matsushita K, et al. A 60 GHz 16QAM/8PSK/QPSK/BPSK direct-conversion transceiver for IEEE802.15.3c. IEEE J Solid-State Circ, 2011, 46: 2988--3004. Google Scholar

[71] Saito N, Tsukizawa T, Shirakata N, et al. A fully integrated 60 GHz CMOS transceiver chipset based on WiGig/IEEE 802.11ad with built-in self calibration for mobile usage. IEEE J Solid-State Circ, 2013, 48: 3146--3159. Google Scholar

[72] Li L M, Reynaert P, Steyaert M. A 60 GHz 15.7 mW static frequency divider in 90nm CMOS. In: Proceedings of ESSCIRC, Seville, 2010. 246--249. Google Scholar

[73] He L, Li L M, Wang Z G. A low-power wideband dB-linear variable gain amplifier with DC offset cancellation for 60 GHz receiver. In: Proceedings of the 17th Annual Wireless and Microwave Technology Conference (WAMICON), Clearwater, 2016. Google Scholar

[74] Okada K, Kondou K, Miyahara M, et al. Full four-channel 6.3-Gb/s 60 GHz CMOS transceiver with low-power analog and digital baseband circuitry. IEEE J Solid-State Circ, 2013, 48: 46--65. Google Scholar

[75] Mitomo T, Tsutsumi Y, Hoshino H, et al. A 2-Gb/s throughput CMOS transceiver chipset with in-package antenna for 60-GHz short-range wireless communication. IEEE J Solid-State Circ, 2012, 47: 3160--3171. Google Scholar

[76] Wu H, Wang N Y, Du Y, et al. A blocker-tolerant current mode 60-GHz receiver with 7.5-GHz bandwidth and 3.8-dB minimum NF in 65-nm CMOS. IEEE Trans Microw Theory Tech, 2015, 63: 1053--1062. Google Scholar

Copyright 2019 Science China Press Co., Ltd. 《中国科学》杂志社有限责任公司 版权所有

京ICP备18024590号-1