logo

SCIENCE CHINA Information Sciences, Volume 61, Issue 10: 102302(2018) https://doi.org/10.1007/s11432-017-9312-9

A low-latency list decoder for polar codes

More info
  • ReceivedSep 1, 2017
  • AcceptedDec 12, 2017
  • PublishedMay 21, 2018

Abstract

Successive cancellation (SC) is a low complexity serial decoding algorithm for polar codes, and successive cancellation list (SCL) can achieve excellent error-correcting performance. However, SCL decoder suffers from long decoding latency compared with belief propagation (BP) decoder. In this paper, a low-latency list decoder whose latency performance can approach that of BP deocder is proposed. A prunable subtree recognizing scheme based on ${\boldsymbol~H}$-Matrix check is proposed by taking the reliability of frozen bits into account. Then, a latency-reduced list decoder based on the prunable constituent codes is proposed. Simulation results show that the decoding latency of proposed list scheme can be reduced significantly, especially for high signal noise ratio (SNR) region.


Acknowledgment

This work was supported in part by National Major Project (Grant No. 2016ZX03001011-005), National Natural Science Foundation Project (Grant No. 61521061), 333 Program of Jiangsu (Grant No. BRA2017366), and Intel.


References

[1] Arikan E. Channel polarization: a method for constructing capacity-achieving codes for symmetric binary-input memoryless channels. IEEE Trans Inf Theory, 2009, 55: 3051-3073 CrossRef Google Scholar

[2] Arikan E, Costello D J, Kliewer J. Guest editorial recent advances in capacity approaching codes. IEEE J Sel Areas Commun, 2016, 34: 205-208 CrossRef Google Scholar

[3] Zhang B J, Shen H, Yin B, et al. A 5G trial of polar code. In: Proceedings of IEEE Globecom Workshops (GC Wkshps), Washington, 2016. Google Scholar

[4] Niu K, Chen K, Lin J R. Polar codes: primary concepts and practical decoding algorithms. IEEE Commun Mag, 2014, 52: 192-203 CrossRef Google Scholar

[5] Arkan E. A performance comparison of polar codes and Reed-Muller codes. IEEE Commun Lett, 2008, 12: 447-449 CrossRef Google Scholar

[6] Yuan B, Parhi K K. Architecture optimizations for BP polar decoders. In: Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing, Vancouver, 2013. 2654--2658. Google Scholar

[7] Yuan B, Parhi K K. Early stopping criteria for energy-efficient low-latency belief-propagation polar code decoders. IEEE Trans Signal Process, 2014, 62: 6496-6506 CrossRef ADS Google Scholar

[8] Simsek C, Turk K. Simplified early stopping criterion for belief-propagation polar code decoders. IEEE Commun Lett, 2016, 20: 1515-1518 CrossRef Google Scholar

[9] Abbas S M, Fan Y Z, Chen J, et al. Low complexity belief propagation polar code decoder. In: Proceedings of IEEE Workshop on Signal Processing Systems (SiPS), Hangzhou, 2015. Google Scholar

[10] Tal I, Vardy A. List decoding of polar codes. IEEE Trans Inf Theory, 2015, 61: 2213-2226 CrossRef Google Scholar

[11] Niu K, Chen K. CRC-aided decoding of polar codes. IEEE Commun Lett, 2012, 16: 1668-1671 CrossRef Google Scholar

[12] Alamdar-Yazdi A, Kschischang F R. A simplified successive-cancellation decoder for polar codes. IEEE Commun Lett, 2011, 15: 1378-1380 CrossRef Google Scholar

[13] Sarkis G, Giard P, Vardy A. Fast polar decoders: algorithm and implementation. IEEE J Sel Areas Commun, 2014, 32: 946-957 CrossRef Google Scholar

[14] Sarkis G, Giard P, Vardy A, et al. Increasing the speed of polar list decoders. In: Proceedings of IEEE Workshop on Signal Processing Systems, Belfast, 2014. Google Scholar

[15] Sarkis G, Giard P, Vardy A. Fast list decoders for polar codes. IEEE J Sel Areas Commun, 2016, 34: 318-328 CrossRef Google Scholar

[16] Yuan B, Parhi K K. LLR-based successive-cancellation list decoder for polar codes with multibit decision. IEEE Trans Circuits Syst II, 2017, 64: 21-25 CrossRef Google Scholar

[17] Xiong C R, Lin J, Yan Z Y. Symbol-decision successive cancellation list decoder for polar codes. IEEE Trans Signal Process, 2016, 64: 675-687 CrossRef ADS arXiv Google Scholar

[18] Xu Q Y, Pan Z W, Liu N. A complexity-reduced fast successive cancellation list decoder for polar codes. Sci China Inf Sci, 2018, 61: 022309 CrossRef Google Scholar

[19] Li G P, Mu J J, Jiao X P. Enhanced belief propagation decoding of polar codes by adapting the parity-check matrix. J Wirel Com Network, 2017, 2017: 40 CrossRef Google Scholar

[20] Tal I, Vardy A. How to construct polar codes. IEEE Trans Inf Theory, 2013, 59: 6562-6582 CrossRef Google Scholar

Copyright 2019 Science China Press Co., Ltd. 《中国科学》杂志社有限责任公司 版权所有

京ICP备18024590号-1