logo

SCIENCE CHINA Information Sciences, Volume 61, Issue 9: 098106(2018) https://doi.org/10.1007/s11432-017-9335-5

Predicting compositional time series via autoregressive Dirichlet estimation

More info
  • ReceivedJul 26, 2017
  • AcceptedJan 8, 2018
  • PublishedMay 18, 2018

Abstract

There is no abstract available for this article.


References

[1] Liu H P, Guo D, Sun F C. Object recognition using tactile measurements: kernel sparse coding methods. IEEE Trans Instrum Meas, 2016, 65: 656-665 CrossRef Google Scholar

[2] Di C L, Yang X H, Wang X C. A four-stage hybrid model for hydrological time series forecasting. PLoS ONE, 2014, 9: e104663 CrossRef PubMed ADS Google Scholar

[3] Zhang J, Yang X H, Chen X J. Wavelet network model based on multiple criteria decision making for forecasting temperature time series. Math Prob Eng, 2015, 2015: 1-4 CrossRef Google Scholar

[4] Zhang J, Yang X H, Li Y Q. A refined rank set pair analysis model based on wavelet analysis for predicting temperature series. Int J Numer Method Heat Fluid Flow, 2015, 25: 974-985 CrossRef Google Scholar

[5] Mills T C. Forecasting compositional time series. Qual Quant, 2010, 44: 673-690 CrossRef Google Scholar

[6] Raharjo H, Xie M, Brombacher A C. On modeling dynamic priorities in the analytic hierarchy process using compositional data analysis. Eur J Oper Res, 2009, 194: 834-846 CrossRef Google Scholar

[7] Wang H W, Liu Q, Mok H M K. A hyperspherical transformation forecasting model for compositional data. Eur J Oper Res, 2007, 179: 459-468 CrossRef Google Scholar

[8] Gelman A. Prior distributions for variance parameters in hierarchical models. Econometrics, 2006, 1:łinebreak 515--534. Google Scholar

[9] Thomas M. Estimating a Dirichlet Distribution. Technical Report MIT, 2000. Google Scholar

Copyright 2019 Science China Press Co., Ltd. 《中国科学》杂志社有限责任公司 版权所有

京ICP备18024590号-1