SCIENCE CHINA Information Sciences, Volume 61 , Issue 7 : 079201(2018) https://doi.org/10.1007/s11432-017-9336-x

Multi-robot coordinated exploration of indoor environments using semantic information

More info
  • ReceivedAug 8, 2017
  • AcceptedNov 30, 2017
  • PublishedJun 13, 2018


There is no abstract available for this article.


This work was supported by National Natural Science Foundation of China (Grant No. 61633002).


Appendix A–E.


[1] Stachniss C. Robotic Mapping and Exploration. Berlin: Springer, 2009. Google Scholar

[2] Stachniss C, Mozos \'{O} M, Burgard W. Efficient exploration of unknown indoor environments using a team of mobile robots. Ann Math Artif Intel, 2008, 52: 205-227 CrossRef Google Scholar

[3] Fang H, Lu S L, Chen J. New advances in complex motion control for single robot systems and multi-agent systems. Sci China Tech Sci, 2016, 59: 1963-1964 CrossRef Google Scholar

[4] Burgard W, Moors M, Stachniss C. Coordinated multi-robot exploration. IEEE Trans Robot, 2005, 21: 376-386 CrossRef Google Scholar

[5] Obwald S, Bennewitz M, Burgard W. Speeding-up robot exploration by exploiting background information. IEEE Robot Autom Lett, 2016, 1: 716-723 CrossRef Google Scholar

[6] Liu P, Zhou D, Wu N J. VDBSCAN: varied density based spatial clustering of applications with noise. In: Proceedings of the International Conference on Service Systems and Service Management, Hong Kong, 2007. Google Scholar

[7] Rottmann A, Mozos Ó M, Stachniss C, et al. Semantic place classification of indoor environments with mobile robots using boosting. In: Proceedings of the 20th National Conference on Artificial Intelligence, Pittsburgh, 2005. 1306--1311. Google Scholar

  • Figure 1

    (Color online) Illustration of the architecture of our multi-robot exploration system. (a) Typical indoor environment with different semantic classifications; (b) Kinect and laser range scanner; (c) CNN-based classifier for semantic classification of indoor places; (d) candidate target frontiers decision-making process with VDBSCAN; (e) hidden Markov model for estimating the semantic classification; (f) our proposed target frontier assignment strategy; (g) the generated grid-map.

Copyright 2020 Science China Press Co., Ltd. 《中国科学》杂志社有限责任公司 版权所有

京ICP备17057255号       京公网安备11010102003388号