logo

SCIENCE CHINA Information Sciences, Volume 61, Issue 8: 080401(2018) https://doi.org/10.1007/s11432-017-9361-3

Hybrid-cavity semiconductor lasers with a whispering-gallery cavity for controlling ${\boldsymbol~Q}$ factor

More info
  • ReceivedNov 28, 2017
  • AcceptedFeb 6, 2018
  • PublishedMay 18, 2018

Abstract

Hybrid cavities composed of a Fabry-Pérot (FP) cavity and awhispering-gallery mode (WGM) microcavity have been proposed anddemonstrated for modulating mode $Q$ factor to realize singlemode and optical bistable lasers. In this article, we report hybrid cavity lasers witha pentagon microcavity and a square microcavity, respectively. Thereflectivity spectra of different microcavities are simulated to selectmicrocavities for hybrid cavities. Mode coupling with mode $Q$ factor enhancement is investigated numerically and experimentally.Stable single mode operations with a high coupling efficiency to a singlemode fiber are realized for a hybrid cavity laser with a square microcavity.Furthermore, optical bistability hybrid lasers are investigated as themicrocavity is unbiased, due to saturable absorption in the microcavity andmode competition, respectively. All-optical flip-flop is demonstrated usingtrigger optical pulses with a width of 100 ps for mode competitionbistability. The stable single mode operation and optical bistability ofhybrid cavity lasers may shed light on the applications for photonicintegrated circuits and optical signal processing.


Acknowledgment

This work was supported by National Natural Science Foundation of China (Grant Nos. 61235004, 61527823, 61376048).


References

[1] McCall S L, Levi A F J, Slusher R E. Whispering-gallery mode microdisk lasers. Appl Phys Lett, 1992, 60: 289-291 CrossRef ADS Google Scholar

[2] Seung June Choi , Djordjev K, Sang Jun Choi K. Microdisk lasers vertically coupled to output waveguides. IEEE Photon Technol Lett, 2003, 15: 1330-1332 CrossRef ADS Google Scholar

[3] Audet R, Belkin M A, Fan J A. Single-mode laser action in quantum cascade lasers with spiral-shaped chaotic resonators. Appl Phys Lett, 2007, 91: 131106 CrossRef ADS Google Scholar

[4] Song Q H, Ge L, Stone A D. Directional Laser Emission from a Wavelength-Scale Chaotic Microcavity. Phys Rev Lett, 2010, 105: 103902 CrossRef PubMed ADS Google Scholar

[5] Jiang X F, Xiao Y F, Zou C L, et al. Highly unidirectional emission and ultralow-threshold lasing from on-chip ultrahigh-Q microcavities. Adv Mater, 2012, 24: 260--264. Google Scholar

[6] Wei-Hua Guo , Yong-Zhen Huang , Qiao-Yin Lu . Modes in square resonators. IEEE J Quantum Electron, 2003, 39: 1563-1566 CrossRef ADS Google Scholar

[7] Huang Y Z, Che K J, Yang Y D. Directional emission InP/GaInAsP square-resonator microlasers. Opt Lett, 2008, 33: 2170-2172 CrossRef ADS Google Scholar

[8] Huang Y Z, Lü X M, Lin J D. Output characteristics of square and circular resonator microlasers connected with two output waveguides. Sci China Technol Sci, 2013, 56: 538-542 CrossRef Google Scholar

[9] Long H, Huang Y Z, Yang Y D, et al. Mode characteristics of unidirectional emission AlGaInAsInP square resonator microlasers. IEEE J Quantum Electron, 2014, 50: 981--989. Google Scholar

[10] Long H, Huang Y Z, Yang Y D. Mode and modulation characteristics for microsquare lasers with a vertex output waveguide. Sci China-Phys Mech Astron, 2015, 58: 114205 CrossRef ADS Google Scholar

[11] Ma X W, Huang Y Z, Yang Y D. Mode coupling in hybrid square-rectangular lasers for single mode operation. Appl Phys Lett, 2016, 109: 071102 CrossRef ADS Google Scholar

[12] Ma X W, Huang Y Z, Yang Y D, et al. Mode and lasing characteristics for hybrid square-rectangular lasers. IEEE J Sel Top Quantum Electron, 2017, 23: 1500409. Google Scholar

[13] Huang Y Z, Ma X W, Yang Y D, et al. Lasing characteristics of integrated lasers with whispering-gallery mode microresonator. In: Proceedings of Society of Photo-Optical Instrumentation Engineers (SPIE), San Francisco, 2016. 9751: 97510J. Google Scholar

[14] Tsang W T, Olsson N A, Logan R A. High-speed direct single-frequency modulation with large tuning rate and frequency excursion in cleaved-coupled-cavity semiconductor lasers. Appl Phys Lett, 1983, 42: 650-652 CrossRef ADS Google Scholar

[15] Coldren L A. Monolithic tunable diode lasers. IEEE J Sel Top Quantum Electron, 2000, 6: 988-999 CrossRef Google Scholar

[16] He J J, Liu D. Wavelength switchable semiconductor laser using half-wave V-coupled cavities. Opt Expr, 2008, 16: 3896-3911 CrossRef ADS Google Scholar

[17] Shang L, Liu L, Xu L. Single-frequency coupled asymmetric microcavity laser. Opt Lett, 2008, 33: 1150-1152 CrossRef ADS Google Scholar

[18] D'Agostino D, Lenstra D, Ambrosius H P M M. Coupled cavity laser based on anti-resonant imaging via multimode interference. Opt Lett, 2015, 40: 653-656 CrossRef ADS Google Scholar

[19] Li X, Zhu Z, Xi Y. Single-mode Fabry-Perot laser with deeply etched slanted double trenches. Appl Phys Lett, 2015, 107: 091108 CrossRef ADS Google Scholar

[20] Tanaka Y, Upham J, Nagashima T. Dynamic control of the Q factor in a photonic crystal nanocavity. Nat Mater, 2007, 6: 862-865 CrossRef PubMed ADS Google Scholar

[21] Hughes S. Coupled-cavity QED Using Planar Photonic Crystals. Phys Rev Lett, 2007, 98: 083603 CrossRef PubMed ADS Google Scholar

[22] Tanabe T, Notomi M, Taniyama H. Dynamic Release of Trapped Light from an Ultrahigh-Q Nanocavity via Adiabatic Frequency Tuning. Phys Rev Lett, 2009, 102: 043907 CrossRef PubMed ADS arXiv Google Scholar

[23] Sato Y, Tanaka Y, Upham J, et al. Strong coupling between distant photonic nanocavities and its dynamic control. Nat Photon, 2011, 6: 5661. Google Scholar

[24] Dündar M A, Voorbraak J A M, N?tzel R. Multimodal strong coupling of photonic crystal cavities of dissimilar size. Appl Phys Lett, 2012, 100: 081107 CrossRef ADS Google Scholar

[25] Jin C Y, Johne R, Swinkels M Y. Ultrafast non-local control of spontaneous emission. Nat Nanotech, 2014, 9: 886-890 CrossRef PubMed ADS arXiv Google Scholar

[26] Ma X W, Huang Y Z, Yang Y D. All-optical flip-flop based on hybrid square-rectangular bistable lasers. Opt Lett, 2017, 42: 2291-2294 CrossRef ADS Google Scholar

[27] Johnson J E, Tang C L, Grande W J. Optical flip-flop based on two-mode intensity bistability in a cross-coupled bistable laser diode. Appl Phys Lett, 1993, 63: 3273-3275 CrossRef ADS Google Scholar

[28] Kawaguchi H. Bistable laser diodes and their applications: state of the art. IEEE J Sel Top Quantum Electron, 1997, 3: 1254-1270 CrossRef Google Scholar

[29] Saitoh E, Miyajima H, Yamaoka T. Current-induced resonance and mass determination of a single magnetic domain wall. Nature, 2004, 432: 203-206 CrossRef PubMed ADS Google Scholar

[30] Takenaka M, Raburn M, Nakano Y. All-optical flip-flop multimode interference bistable laser diode. IEEE Photon Technol Lett, 2005, 17: 968-970 CrossRef ADS Google Scholar

[31] Huybrechts K, Morthier G, Baets R. Fast all-optical flip-flop based on a single distributed feedback laser diode. Opt Expr, 2008, 16: 11405-11410 CrossRef ADS Google Scholar

[32] Liu L, Kumar R, Huybrechts K. An ultra-small, low-power, all-optical flip-flop memory on a silicon chip. Nat Photon, 2010, 4: 182-187 CrossRef ADS Google Scholar

[33] Wu Y, Zhu Y, Liao X. All-optical flip-flop operation based on bistability in V-cavity laser. Opt Expr, 2016, 24: 12507-12514 CrossRef ADS Google Scholar

[34] Fitsios D, Alexoudi T, Bazin A. Ultra-compact III?V-on-Si photonic crystal memory for flip-flop operation at 5 Gb/s. Opt Expr, 2016, 24: 4270-4277 CrossRef ADS Google Scholar

[35] Alexoudi T, Fitsios D, Bazin A, et al. III-V-on-Si photonic crystal nanocavity laser technology for optical static random access memories. IEEE J Sel Top Quantum Electron, 2016, 22: 4901410. Google Scholar

[36] Mori T, Yamayoshi Y, Kawaguchi H. Low-switching-energy and high-repetition-frequency all-optical flip-flop operations of a polarization bistable vertical-cavity surface-emitting laser. Appl Phys Lett, 2006, 88: 101102 CrossRef ADS Google Scholar

[37] Katayama T, Ooi T, Kawaguchi H. Experimental Demonstration of Multi-Bit Optical Buffer Memory Using 1.55-$\mu{\hbox~{m}}$ Polarization Bistable Vertical-Cavity Surface-Emitting Lasers. IEEE J Quantum Electron, 2009, 45: 1495-1504 CrossRef ADS Google Scholar

[38] Alharthi S S, Hurtado A, Korpijarvi V M. Circular polarization switching and bistability in an optically injected 1300 nm spin-vertical cavity surface emitting laser. Appl Phys Lett, 2015, 106: 021117 CrossRef ADS Google Scholar

[39] Wei-Hua Guo , Wei-Jun Li , Yong-Zhen Huang . Computation of resonant frequencies and quality factors of cavities by FDTD technique and Pade approximation. IEEE Microw Wireless Compon Lett, 2001, 11: 223-225 CrossRef Google Scholar

[40] Yang Y D, Wang S J, Huang Y Z. Investigation of mode coupling in a microdisk resonator for realizing directional emission. Opt Expr, 2009, 17: 23010-23015 CrossRef ADS Google Scholar

[41] Harder C, Lau K Y, Yariv A. Bistability and pulsations in CW semiconductor lasers with a controlled amount of saturable absorption. Appl Phys Lett, 1981, 39: 382-384 CrossRef ADS Google Scholar

[42] Li J, Wang Q. A common-cavity two-section InGaAsP/InP bistable laser with a low optical switching power. Opt Commun, 1991, 83: 71-75 CrossRef ADS Google Scholar

  • Figure 1

    (Color online) Simulated reflectivity spectra for (a) an FP end face with a width $d$ = 0.4 $\mu~$m, (b) a microdisk cavity with a radius of $r$ = 5 $\mu~$m, (c) a vertex and (d) the middle point of one side of a square microcavity with a side length $a$ = 10 $\mu~$m, and (e) a vertex and (f) the middle point of one side of a pentagon microcavity with a side length $a$ = 7 $\mu~$m.

  • Figure 2

    (Color online) Mode wavelength and $Q$ factor versus the variation in $L$ for even WG-FP hybrid modes in a square-FP hybrid cavity with $a$ = 10 $\mu~$m, $d$= 1.5 $\mu~$m and $L$ = 300 $\mu~$m.

  • Figure 3

    (Color online) (a) Calculated mode $Q$ factor versus mode wavelength at $g_{\rm~SQ}$ = 0 and 4 cm$^{~-~1}$ for a hybrid cavity with a square resonator at $a$ = 15 $\mu~$m, $d~$ = 1.5 $\mu~$m, and $L$ = 300 $\mu~$m. (b) Mode intensity distributions of $\vert~H_{z}\vert~^{2}$ in the square and FP sections for the high $Q$ mode of 1531.73 nm at $g_{\rm~SQ}$ = 0. The mode intensity in the FP section is magnified by 10 times for clarify.

  • Figure 4

    (Color online) SEM images of (a) an isolation trench region and (b) cleaved FP cavity after BCB planarization process. Microscopic images of hybrid cavity lasers with (c) a pentagon microcavity and (d) a square microcavity.

  • Figure 5

    (Color online) (a) SMF coupled power versus increased FP-cavity current $I_{\rm~FP}$ at $I_{\rm~PE}$ = 0, 1, and 2 mA, respectively, and (b) SMF coupled power measure by increasing and decreasing $I_{\rm~FP}$ at $~I_{\rm~PE}$ = 0, for a pentagon-cavity current for a pentagon-FP laser with $~a$ = 10 $\mu~$m, $W$ = 1.5 $\mu~$m, and $L$ = 300 $\mu~$m.

  • Figure 6

    (Color online) Lasing spectra for the hybrid cavity laser with pentagon microcavity side length $a$ = 10 $\mu~$m, and FP cavity width $d$ = 1.5 $\mu~$m and length $L$ = 300 $\mu~$m, (a) and (b) at $I_{\rm~FP~}$ = 40 mA and $I_{\rm~PE}$ = 2 mA, and (c) at $I_{\rm~PE}$ = 1 mA and $I_{\rm~FP~}$= 30, 36, and 43 mA.

  • Figure 7

    (Color online) Output powers coupled into a single mode fiber versus $I_{\rm~FP}$ for a hybrid cavity laser with a square side length $a$ = 10 $\mu~$m, and the FP cavity width $d$ = 1.5 $\mu~$m and length $L$ = 300 $\mu~$m, at the square cavity injection current $I_{\rm~SQ~}$= 1, 5 and 10 mA, respectively.

  • Figure 8

    (Color online) Lasing spectra at the square cavity injection current 10 mA and FP cavity injection current of (a) 5 mA and (b) 40 mA for the hybrid cavity laser with a square side length $a$ = 10 $\mu~$m, and the FP cavity width $d$ = 1.5 $\mu~$m and length $L$ = 300 $\mu~$m.

  • Figure 9

    (Color online) (a) Lasing spectra map exhibits the mode coupling with the variation of FP cavity injection current at $I_{\rm~SQ}$ = 10 mA, for a HSRL with $a$ = 15 $\mu~$m, $d$ = 2 $\mu~$m, and $L~$ = 300 $\mu~$m. The white curves are the lasing spectra at $I_{\rm~FP}$ = 3, 5, 7, 9, 11, and 13 mA, respectively. (b) Mode wavelengths and (c) $Q$ factors for the hybrid modes as functions of $I_{\rm~FP}$.

  • Figure 10

    (Color online) (a) Single-mode fiber coupled output power versus $I_{\rm~FP}$ of the first bistable region, and (b) the corresponding lasing spectra of the upper and lower states at $I_{\rm~FP}$ = 23.5 mA, for a hybrid cavity laser with square side length $a$ = 15 $\mu~$m, $d~$ = 1.5 $\mu~$m, and $L$ = 300 $\mu~$m as $I_{\rm~SQ}$ = 0 and 287 K.

  • Figure 11

    (Color online) (a) Single-mode fiber coupled output power versus $I_{\rm~FP}$ of the second bistable region, (b) the corresponding lasing spectra of the upper and lower states at $I_{\rm~FP}$ = 48 mA, and (c) the corresponding side-mode suppression ratio for the hybrid cavity laser with square side length $a$ = 15 $\mu~$m, $d~$= 1.5 $\mu~$m, and $L$ = 300 $\mu~$m as $I_{\rm~SQ}$ = 0 and 287 K.

  • Figure 12

    Oscilloscope traces showing the dynamic all-optical flip-flop operation. (a) Input trigger optical pulses for the set/reset signals with the pulse width of 100 ps. Output optical signals at (b) 1530.21 nm and (c) 1560.44 nm under the trigger pulses for the hybrid cavity laser with square side length $a$ = 15 $\mu~$m, $d~$= 1.5 $\mu~$m, and $L$ = 300 $\mu~$m at $I_{\rm~SQ}$ = 0, $I_{\rm~FP~}$= 48 mA, and 287 K.

Copyright 2019 Science China Press Co., Ltd. 《中国科学》杂志社有限责任公司 版权所有

京ICP备18024590号-1