logo

SCIENCE CHINA Information Sciences, Volume 61, Issue 8: 089304(2018) https://doi.org/10.1007/s11432-017-9375-6

Adaptive network-aware FeLAA LBT strategy for fair uplink FeLAA-WiFi coexistence

More info
  • ReceivedOct 27, 2017
  • AcceptedMar 5, 2018
  • PublishedJul 4, 2018

Abstract

There is no abstract available for this article.


Acknowledgment

This work was supported by National Natural Science Foundation of China (Grant No. 61571111).


Supplement

Appendixes A–C.


References

[1] Cui Q M, Cui Z Y, Zheng W. Energy-aware deployment of dense heterogeneous cellular networks with QoS constraints. Sci China Inf Sci, 2017, 60: 042303 CrossRef Google Scholar

[2] Ho Q D, Tweed D, Le-Ngoc T. Network-aware Adaptive LBT (NALT) Coexistence Mechanism. Long Term Evolution in Unlicensed Bands. Berlin: Springer, 2017. 49--58. Google Scholar

[3] Ajami A K, Artail H. On the modeling and analysis of uplink and downlink IEEE 802.11ax Wi-Fi with LTE in unlicensed spectrum. IEEE Trans Wirel Commun, 2017, 16: 5779-5795 CrossRef Google Scholar

[4] Yin R, Yu G D, Maaref A. LBT-based adaptive channel access for LTE-U systems. IEEE Trans Wirel Commun, 2016, 15: 6585-6597 CrossRef Google Scholar

[5] Zhang Q X, Wang Q L, Feng Z Y. Design and performance analysis of a fairness-based license-assisted access and resource scheduling scheme. IEEE J Sel Areas Commun, 2016, 34: 2968-2980 CrossRef Google Scholar

[6] Study on licensed-assisted access to unlicensed spectrum. 3GPP TR 36.889, 2015. Google Scholar

[7] Bianchi G. Performance analysis of the IEEE 802.11 distributed coordination function. IEEE J Sel Areas Commun, 2000, 18: 535-547 CrossRef Google Scholar

[8] Valls V, Garcia-Saavedra A, Costa X. Maximizing LTE capacity in unlicensed bands (LTE-U/LAA) while fairly coexisting with 802.11 WLANs. IEEE Commun Lett, 2016, 20: 1219-1222 CrossRef Google Scholar

  •   

    Algorithm 1 Adaptive network-aware FeLAA LBT strategy (ALS)

    Input: Transmission durations $C_{\rm~l}$, $C_{\rm~w}$, transmission probabilities $\tau_{\rm~l}$, device numbers $n_{\rm~l}$, $n_{\rm~w}$, the boundary condition value $\varepsilon$, and $T_{\rm~d}$. Output: The initial CW $W_{{\rm~l},~T_{\rm~d}}$, the maximum CW usage limitation $K_{T_{\rm~d}}$.

    $W_{\rm~l}~\Leftarrow~W_{\rm~l,min}$, $K\Leftarrow1$, evaluate $\widehat{\tau_{\rm~w}}$ as $\tau_{\rm~w}$, and then calculate $\frac{\tau_{\rm~l}(1-\tau_{\rm~w})C_{\rm~l}}{\tau_{\rm~w}(1-\tau_{\rm~l})C_{\rm~w}}$;

    if $\frac{n_{\rm~w}}{n_{\rm~l}}(1-\varepsilon)\leq\frac{\tau_{\rm~l}(1-\tau_{\rm~w})C_{\rm~l}}{\tau_{\rm~w}(1-\tau_{\rm~l})C_{\rm~w}}\leq\frac{n_{\rm~w}}{n_{\rm~l}}(1+\varepsilon).$ then

    $W_{{\rm~l},~T_{\rm~d}+1}~\Leftarrow~W_{{\rm~l},~T_{\rm~d}}$, $K_{T_{\rm~d}+1}~\Leftarrow~K_{T_{\rm~d}}$;

    else

    if $t_p=3$ then

    ${\rm~CW}_{t_p,~{\rm~max}}=255$;

    else

    if $t_p=4$ then

    ${\rm~CW}_{t_p,~{\rm~max}}=1023$;

    end if

    end if

    if $\frac{\tau_{\rm~l}(1-\tau_{\rm~w})C_{\rm~l}}{\tau_{\rm~w}(1-\tau_{\rm~l})C_{\rm~w}}>\frac{n_{\rm~w}}{n_{\rm~l}}(1+\varepsilon)$ then

    if $2(W_{{\rm~l},~T_{\rm~d}}+1)-1<{\rm~CW}_{t_p,{\rm~max}}$ then

    $W_{{\rm~l},~T_{\rm~d}+1}~\Leftarrow~2(W_{{\rm~l},~T_{\rm~d}}+1)-1$;

    else

    $W_{{\rm~l},~T_{\rm~d}+1}~\Leftarrow~W_{{\rm~l},~T_{\rm~d}}$;

    end if

    if $K_{T_{\rm~d}}<~8$ then

    $K_{T_{\rm~d}+1}~\Leftarrow~K_{T_{\rm~d}}+1$;

    else

    $K_{T_{\rm~d}+1}~\Leftarrow~K_{T_{\rm~d}}$;

    end if

    else

    if $\frac{\tau_{\rm~l}(1-\tau_{\rm~w})C_{\rm~l}}{\tau_{\rm~w}(1-\tau_{\rm~l})C_{\rm~w}}<\frac{n_{\rm~w}}{n_{\rm~l}}(1-\varepsilon)$ then

    if $(W_{{\rm~l},~T_{\rm~d}}+1)/2-1>{\rm~CW}_{\rm~min}$ then

    $W_{{\rm~l},~T_{\rm~d}+1}~\Leftarrow~(W_{{\rm~l},~T_{\rm~d}}+1)/2-1$;

    else

    $W_{{\rm~l},~T_{\rm~d}+1}~\Leftarrow~W_{{\rm~l},~T_{\rm~d}}$;

    end if

    if $K_{T_{\rm~d}}>1$ then

    $K_{T_{\rm~d}+1}~\Leftarrow~K_{T_{\rm~d}}-1$;

    else

    $K_{T_{\rm~d}+1}~\Leftarrow~K_{T_{\rm~d}}$;

    end if

    end if

    end if

    end if

    return $W_{\rm~l,\textit~T_{\rm~d}+1},K_{\textit~T_{\rm~d}+1}$.

Copyright 2020 Science China Press Co., Ltd. 《中国科学》杂志社有限责任公司 版权所有

京ICP备18024590号-1       京公网安备11010102003388号