logo

SCIENCE CHINA Information Sciences, Volume 61, Issue 8: 080403(2018) https://doi.org/10.1007/s11432-017-9449-4

Silicon chip-scale space-division multiplexing: from devices to system

More info
  • ReceivedDec 28, 2017
  • AcceptedMay 16, 2018
  • PublishedJul 6, 2018

Abstract

Space-division multiplexing (SDM) technique has attractedincreasing attentions recently, because it provides an effective way toincrease transmission capacity. With the continuous and exponential increasein data demands, high-density integration of silicon photonic components isof significant interest in terms of link price, performance and powerconsumption. The multimode/mutlicore devices applied to achieve diversefunctionalities are key building blocks to construct a chip-scale SDM systembased on a silicon on insulator (SOI) platform. This study reviews the recentprogress of multimode/multicore devices, which enable coupling,multiplexing/demultiplexing, transmitting switching, as well as modulationand detection. Based on these devices, a complete on-chip SDM system isconstructed and discussed.


Acknowledgment

This work was supported by National Natural Science Foundation of China (Grant Nos. 61275072, 61475050, 61775073), New Century Excellent Talent Project in Ministry of Education of China (Grant No. NCET-13-0240), and Director fund of WNLO and Nature Science Foundation of Hubei Province, China (Grant No. 2016CFB416).


References

[1] Shacham A, Bergman K, Carloni L P. Photonic networks-on-chip for future generations of chip multiprocessors. IEEE Trans Comput, 2008, 57: 1246-1260 CrossRef Google Scholar

[2] Miller D. Device requirements for optical interconnects to silicon chips. Proc IEEE, 2009, 97: 1166-1185 CrossRef Google Scholar

[3] Nagarajan R, Ziari M, Kato M, et al. Large-scale DWDM photonic integrated circuits. In: Proceedings of IEEE LEOS Annual Meeting Conference, Sydney, 2005. Google Scholar

[4] Jalali B, Fathpour S. Silicon photonics. J Lightwave Technol, 2006, 24: 4600-4615 CrossRef ADS Google Scholar

[5] Narasimha A, Analui B, Liang Y. A fully integrated 4$\times$ 10-Gb/s DWDM optoelectronic transceiver implemented in a standard 0.13 $\mu$m CMOS SOI technology. IEEE J Solid-State Circ, 2007, 42: 2736-2744 CrossRef Google Scholar

[6] Doerr C R, Chen L, Buhl L L. Eight-channel SiO$_2$/Si$_3$N$_4$/Si/Ge CWDM receiver. IEEE Photon Technol Lett, 2011, 23: 1201-1203 CrossRef ADS Google Scholar

[7] Gill D M, Xiong C, Proesel J E. Demonstration of error-free 32-Gb/s operation from monolithic CMOS nanophotonic transmitters. IEEE Photon Technol Lett, 2016, 28: 1410-1413 CrossRef ADS Google Scholar

[8] Dong P, Lee J, Chen Y K. Four-channel 100-Gb/s per channel discrete multitone modulation using silicon photonic integrated circuits. J Lightwave Technol, 2016, 34: 79-84 CrossRef ADS Google Scholar

[9] Boeuf F, Cremer S, Temporiti E, et al. Recent progress in silicon photonics R&D and manufacturing on 300 mm wafer platform. In: Proceedings of Optical Fiber Communications Conference and Exhibition (OFC), Los Angeles, 2015. Google Scholar

[10] Orcutt J, Gill D M, Proesel J E, et al. Monolithic silicon photonics at 25 Gb/s. In: Proceedings of Optical Fiber Communications Conference and Exhibition (OFC), Anaheim, 2016. Google Scholar

[11] Berdagué S, Facq P. Mode division multiplexing in optical fibers. Appl Opt, 1982, 21: 1950-1955 CrossRef ADS Google Scholar

[12] Murshid S H, Grossman B, Narakorn P. Spatial domain multiplexing: a new dimension in fiber optic multiplexing. Opt Laser Tech, 2008, 40: 1030-1036 CrossRef ADS Google Scholar

[13] Li G F. The future of space-division multiplexing and its applications. In: Proceedings of OptoElectronics and Communications Conference held jointly with International Conference on Photonics in Switching (OECC/PS), Kyoto, 2013. Google Scholar

[14] Sakaguchi J, Puttnam B, Klaus W, et al. 19-core fiber transmission of 19$\times$100$\times$172-Gb/s SDM-WDM-PDM-QPSK signals at 305Tb/s. In: Proceedings of Optical Fiber Communication Conference, Los Angeles, 2012. Google Scholar

[15] Koshiba M, Saitoh K, Kokubun Y. Heterogeneous multi-core fibers: proposal and design principle. IEICE Electron Express, 2009, 6: 98-103 CrossRef Google Scholar

[16] Ryf R, Randel S, Gnauck A, et al. Space-division multiplexing over 10 km of three-mode fiber using coherent 6$\times$6 MIMO processing. In: Proceedings of Optical Fiber Communication Conference, Los Angeles, 2011. Google Scholar

[17] Murshid S, Alanzi S, Hridoy A. Combining spatial domain multiplexing and orbital angular momentum of photon-based multiplexing to increase the bandwidth of optical fiber communication systems. Opt Eng, 2016, 55: 066124 CrossRef ADS Google Scholar

[18] Murshid S, Iqbal J. Spatial combination of optical channels in a multimode waveguide. In: Proceedings of Frontiers in Optics, Rochester, 2010. Google Scholar

[19] Hsu R C J, Tarighat A, Shah A. Capacity enhancement in coherent optical MIMO (COMIMO) multimode fiber links. IEEE Commun Lett, 2006, 10: 195-197 CrossRef Google Scholar

[20] Tkach R W. Scaling optical communications for the next decade and beyond. Bell Labs Tech J, 2010, 14: 3-9 CrossRef Google Scholar

[21] Lai Y X, Yu Y, Fu S N. Efficient spot size converter for higher-order mode fiber-chip coupling. Opt Lett, 2017, 42: 3702-3705 CrossRef ADS Google Scholar

[22] Wohlfeil B, Rademacher G, Stamatiadis C. A two-dimensional fiber grating coupler on SOI for mode division multiplexing. IEEE Photon Technol Lett, 2016, 28: 1241-1244 CrossRef ADS Google Scholar

[23] Yu Y, Ye M Y, Fu S N. On-chip polarization controlled mode converter with capability of WDM operation. IEEE Photon Technol Lett, 2015, 27: 1957-1960 CrossRef ADS Google Scholar

[24] Dai D X, Mao M. Mode converter based on an inverse taper for multimode silicon nanophotonic integrated circuits. Opt Express, 2015, 23: 28376-28388 CrossRef ADS Google Scholar

[25] Koonen A M L, Chen H S, van den Boom H P A. Silicon photonic integrated mode multiplexer and demultiplexer. IEEE Photon Technol Lett, 2012, 24: 1961-1964 CrossRef ADS Google Scholar

[26] Ding Y H, Ou H Y, Xu J. Silicon photonic integrated circuit mode multiplexer. IEEE Photon Technol Lett, 2013, 25: 648-651 CrossRef ADS Google Scholar

[27] Ding Y H, Yvind K. Efficient silicon PIC mode multiplexer using grating coupler array with aluminum mirror for few-mode fiber. In: Proceedings of Lasers and Electro-Optics (CLEO), San Jose, 2015. Google Scholar

[28] Wu Y F, Chiang K S. Ultra-broadband mode multiplexers based on three-dimensional asymmetric waveguide branches. Opt Lett, 2017, 42: 407-410 CrossRef ADS Google Scholar

[29] Riesen N, Gross S, Love J D. Femtosecond direct-written integrated mode couplers. Opt Express, 2014, 22: 29855-29861 CrossRef ADS Google Scholar

[30] Dong J L, Chiang K S, Jin W. Mode multiplexer based on integrated horizontal and vertical polymer waveguide couplers. Opt Lett, 2015, 40: 3125-3128 CrossRef ADS Google Scholar

[31] Ding Y H, Ye F H, Peucheret C. On-chip grating coupler array on the SOI platform for fan-in/fan-out of MCFs with low insertion loss and crosstalk. Opt Express, 2015, 23: 3292-3298 CrossRef ADS Google Scholar

[32] Riesen N, Gross S, Love J D. Monolithic mode-selective few-mode multicore fiber multiplexers. Sci Rep, 2017, 7: 6971 CrossRef PubMed ADS Google Scholar

[33] van Uden R G H, Correa R A, Lopez E A. Ultra-high-density spatial division multiplexing with a few-mode multicore fibre. Nat Photon, 2014, 8: 865-870 CrossRef ADS Google Scholar

[34] Qiu J F, Zhang D L, Tian Y. Performance analysis of a broadband second-order mode converter based on multimode interference coupler and phase shifter. IEEE Photonic J, 2015, 7: 1-8 CrossRef Google Scholar

[35] Li Y M, Li C, Li C B. Compact two-mode (de)multiplexer based on symmetric Y-junction and Multimode interference waveguides. Opt Express, 2014, 22: 5781-5786 CrossRef ADS Google Scholar

[36] Uematsu T, Ishizaka Y, Kawaguchi Y. Design of a compact two-mode multi/demultiplexer consisting of multimode interference waveguides and a wavelength-insensitive phase shifter for mode-division multiplexing transmission. J Lightwave Technol, 2012, 30: 2421-2426 CrossRef ADS Google Scholar

[37] Greenberg M, Orenstein M. Simultaneous dual mode add/drop multiplexers for optical interconnects buses. Opt Commun, 2006, 266: 527-531 CrossRef ADS Google Scholar

[38] Dai D X, Wang J, Shi Y C. Silicon mode (de)multiplexer enabling high capacity photonic networks-on-chip with a single-wavelength-carrier light. Opt Lett, 2013, 38: 1422-1424 CrossRef ADS Google Scholar

[39] Ding Y H, Xu J, Da Ros F. On-chip two-mode division multiplexing using tapered directional coupler-based mode multiplexer and demultiplexer. Opt Express, 2013, 21: 10376-10382 CrossRef ADS Google Scholar

[40] Luo L W, Ophir N, Chen C P. WDM-compatible mode-division multiplexing on a silicon chip. Nat Commun, 2014, 5: 3069 CrossRef PubMed ADS Google Scholar

[41] Dorin B A, Ye W N. Two-mode division multiplexing in a silicon-on-insulator ring resonator. Opt Express, 2014, 22: 4547-4558 CrossRef ADS Google Scholar

[42] Yang Y D, Li Y, Huang Y Z. Silicon nitride three-mode division multiplexing and wavelength-division multiplexing using asymmetrical directional couplers and microring resonators. Opt Express, 2014, 22: 22172-22183 CrossRef ADS Google Scholar

[43] Qiu H Y, Yu H, Hu T. Silicon mode multi/demultiplexer based on multimode grating-assisted couplers. Opt Express, 2013, 21: 17904-17911 CrossRef ADS Google Scholar

[44] Davis J A, Grieco A, Souza M C. Hybrid multimode resonators based on grating-assisted counter-directional couplers. Opt Express, 2017, 25: 16484-16490 CrossRef ADS Google Scholar

[45] Xing J J, Li Z Y, Yu Y C. Design of polarization-independent adiabatic splitters fabricated on silicon-on-insulator substrates. Opt Express, 2013, 21: 26729-26734 CrossRef ADS Google Scholar

[46] Xing J J, Xiong K, Xu H. Silicon-on-insulator-based adiabatic splitter with simultaneous tapering of velocity and coupling. Opt Lett, 2013, 38: 2221-2223 CrossRef ADS Google Scholar

[47] Xing J J, Li Z Y, Xiao X. Two-mode multiplexer and demultiplexer based on adiabatic couplers. Opt Lett, 2013, 38: 3468-3470 CrossRef ADS Google Scholar

[48] Wang J, Xuan Y, Qi M H. Broadband and fabrication-tolerant on-chip scalable mode-division multiplexing based on mode-evolution counter-tapered couplers. Opt Lett, 2015, 40: 1956-1959 CrossRef ADS Google Scholar

[49] Sun C L, Yu Y, Ye M Y. An ultra-low crosstalk and broadband two-mode (de)multiplexer based on adiabatic couplers. Sci Rep, 2016, 6: 38494 CrossRef PubMed ADS Google Scholar

[50] Wang J, Deng S P, Wong C Y, et al. Monolithically integrated silicon hybrid demultiplexer with improved loss and crosstalk suppression. In: Proceedings of European Conference on Optical Communication, Gothenburg, 2017. Google Scholar

[51] Sun Y, Xiong Y, Ye W N. Experimental demonstration of a two-mode (de)multiplexer based on a taper-etched directional coupler. Opt Lett, 2016, 41: 3743-3746 CrossRef ADS Google Scholar

[52] Li C L, Dai D X. Low-loss and low-crosstalk multi-channel mode (de)multiplexer with ultrathin silicon waveguides. Opt Lett, 2017, 42: 2370-2373 CrossRef ADS Google Scholar

[53] Sun C L, Yu Y, Chen G Y. Silicon mode multiplexer processing dual-path mode-division multiplexing signals. Opt Lett, 2016, 41: 5511-5514 CrossRef ADS Google Scholar

[54] Sun X, Liu H C, Yariv A. Adiabaticity criterion and the shortest adiabatic mode transformer in a coupled-waveguide system. Opt Lett, 2009, 34: 280-282 CrossRef ADS Google Scholar

[55] Yariv A, Sun X K. Supermode Si/III-V hybrid lasers, optical amplifiers and modulators: a proposal and analysis. Opt Express, 2007, 15: 9147-9151 CrossRef ADS Google Scholar

[56] Driscoll J B, Grote R R, Souhan B. Asymmetric Y-junctions in silicon waveguides for on-chip mode-division multiplexing. Opt Lett, 2013, 38: 1854-1856 CrossRef ADS Google Scholar

[57] Chen W W, Wang P J, Yang T J. Silicon three-mode (de)multiplexer based on cascaded asymmetric Y-junctions. Opt Lett, 2016, 41: 2851-2854 CrossRef ADS Google Scholar

[58] Chen W W, Wang P J, Yang J Y. Optical mode interleaver based on the asymmetric multimode Y-junction. IEEE Photon Technol Lett, 2014, 26: 2043-2046 CrossRef ADS Google Scholar

[59] Chen W W, Wang P J, Yang J Y. Mode multi/demultiplexer based on cascaded asymmetric Y-junctions. Opt Express, 2013, 21: 25113-25119 CrossRef ADS Google Scholar

[60] Pan T H, Tseng S Y. Short and robust silicon mode (de)multiplexers using shortcuts to adiabaticity. Opt Express, 2015, 23: 10405-10412 CrossRef ADS Google Scholar

[61] Guo D F, Chu T. Silicon mode (de)multiplexers with parameters optimized using shortcuts to adiabaticity. Opt Express, 2017, 25: 9160-9170 CrossRef ADS Google Scholar

[62] Chung H C, Lee K S, Tseng S Y. Short and broadband silicon asymmetric Y-junction two-mode (de)multiplexer using fast quasiadiabatic dynamics. Opt Express, 2017, 25: 13626-13634 CrossRef ADS Google Scholar

[63] Chien K H, Yeih C S, Tseng S Y. Mode conversion/splitting in multimode waveguides based on invariant engineering. J Lightwave Technol, 2013, 31: 3387-3394 CrossRef ADS Google Scholar

[64] Martínez-Garaot S, Tseng S Y, Muga J G. Compact and high conversion efficiency mode-sorting asymmetric Y-junction using shortcuts to adiabaticity. Opt Lett, 2014, 39: 2306-2309 CrossRef ADS Google Scholar

[65] Tseng S Y, Wen R D, Chiu Y F. Short and robust directional couplers designed by shortcuts to adiabaticity. Opt Express, 2014, 22: 18849-18859 CrossRef ADS Google Scholar

[66] Wang J, He S L, Dai D X. On-chip silicon 8-channel hybrid (de)multiplexer enabling simultaneous mode- and polarization-division-multiplexing. Laser Photonic Rev, 2014, 8: 18-22 CrossRef Google Scholar

[67] Wang J, Chen S T, Dai D X. Silicon hybrid demultiplexer with 64 channels for wavelength/mode-division multiplexed on-chip optical interconnects. Opt Lett, 2014, 39: 6993-6996 CrossRef ADS Google Scholar

[68] Dai D X, Li C L, Wang S P. 10-channel mode (de)multiplexer with dual polarizations. Laser Photonic Rev, 2018, 12: 1700109 CrossRef Google Scholar

[69] Dai D X, Wang J, Chen S T. Monolithically integrated 64-channel silicon hybrid demultiplexer enabling simultaneous wavelength- and mode-division-multiplexing. Laser Photonic Rev, 2015, 9: 339-344 CrossRef Google Scholar

[70] Chen K X, Wang S Y, Chen S T. Experimental demonstration of simultaneous mode and polarization-division multiplexing based on silicon densely packed waveguide array. Opt Lett, 2015, 40: 4655-4658 CrossRef ADS Google Scholar

[71] Song W, Gatdula R, Abbaslou S. High-density waveguide superlattices with low crosstalk. Nat Commun, 2015, 6: 7027 CrossRef PubMed ADS Google Scholar

[72] Yang N, Yang H S, Hu H R. Theory of high-density low-cross-talk waveguide superlattices. Photon Res, 2016, 4: 233-239 CrossRef Google Scholar

[73] Cerutti I, Andriolli N, Velha P. Engineering of closely packed silicon-on-isolator waveguide arrays for mode division multiplexing applications. J Opt Soc Am B, 2017, 34: 497-506 CrossRef ADS Google Scholar

[74] Tan K, Huang Y, Lo G Q. Compact highly-efficient polarization splitter and rotator based on 90$^{\circ}$ bends. Opt Express, 2016, 24: 14506-14512 CrossRef ADS Google Scholar

[75] Dai D X, Bowers J E. Novel ultra-short and ultra-broadband polarization beam splitter based on a bent directional coupler. Opt Express, 2011, 19: 18614-18620 CrossRef ADS Google Scholar

[76] Wu H, Tan Y, Dai D X. Ultra-broadband high-performance polarizing beam splitter on silicon. Opt Express, 2017, 25: 6069-6075 CrossRef ADS Google Scholar

[77] Zhang Y, He Y, Jiang X H. Ultra-compact and highly efficient silicon polarization splitter and rotator. APL Photonic, 2016, 1: 091304 CrossRef ADS Google Scholar

[78] Xu H N, Shi Y C. Ultra-broadband 16-channel mode division (de)multiplexer utilizing densely packed bent waveguide arrays. Opt Lett, 2016, 41: 4815-4818 CrossRef ADS Google Scholar

[79] Xu H N, Shi Y C. Broadband nine-channel mode-division (de)multiplexer based on densely packed multimode waveguide arrays. J Lightwave Technol, 2017, 35: 4949-4953 CrossRef ADS Google Scholar

[80] Xu H N, Shi Y C. Ultra-broadband dual-mode 3 dB power splitter based on a Y-junction assisted with mode converters. Opt Lett, 2016, 41: 5047-5050 CrossRef ADS Google Scholar

[81] Luo Y C, Yu Y, Ye M Y. Integrated dual-mode 3 dB power coupler based on tapered directional coupler. Sci Rep, 2016, 6: 23516 CrossRef PubMed ADS Google Scholar

[82] Atsumi Y, Kang J H, Hayashi Y. Analysis of higher-order mode suppressed transmission in low-loss silicon multimode waveguides on silicon-on-insulator substrates. Jpn J Appl Phys, 2014, 53: 078002 CrossRef ADS Google Scholar

[83] Ahmmed K T, Chan H P, Li B. Broadband high-order mode pass filter based on mode conversion. Opt Lett, 2017, 42: 3686-3689 CrossRef ADS Google Scholar

[84] Guan X W, Ding Y H, Frandsen L H. Ultra-compact broadband higher order-mode pass filter fabricated in a silicon waveguide for multimode photonics. Opt Lett, 2015, 40: 3893-3896 CrossRef ADS Google Scholar

[85] Ríos C, Stegmaier M, Hosseini P. Integrated all-photonic non-volatile multi-level memory. Nat Photon, 2015, 9: 725-732 CrossRef ADS Google Scholar

[86] Feldmann J, Stegmaier M, Gruhler N. Calculating with light using a chip-scale all-optical abacus. Nat Commun, 2017, 8: 1256 CrossRef PubMed ADS Google Scholar

[87] Miller K J, Hallman K A, Haglund R F. Silicon waveguide optical switch with embedded phase change material. Opt Express, 2017, 25: 26527-26536 CrossRef ADS arXiv Google Scholar

[88] Huang T Y, Pan Z P, Zhang M M. Design of reconfigurable on-chip mode filters based on phase transition in vanadium dioxide. Appl Phys Express, 2016, 9: 112201 CrossRef ADS Google Scholar

[89] Xu Q F, Fattal D, Beausoleil R G. Silicon microring resonators with 1.5-$\mu$m radius. Opt Express, 2008, 16: 4309-4315 CrossRef ADS Google Scholar

[90] Gabrielli L H, Liu D, Johnson S G. On-chip transformation optics for multimode waveguide bends. Nat Commun, 2012, 3: 1217 CrossRef PubMed ADS Google Scholar

[91] Dai D X. Multimode optical waveguide enabling microbends with low inter-mode crosstalk for mode-multiplexed optical interconnects. Opt Express, 2014, 22: 27524-27534 CrossRef ADS Google Scholar

[92] Sun C L, Yu Y, Chen G Y. Ultra-compact bent multimode silicon waveguide with ultralow inter-mode crosstalk. Opt Lett, 2017, 42: 3004-3007 CrossRef ADS Google Scholar

[93] Callewaert F, Aydin K. Inverse-designed all-dielectric waveguide bend. In: Proceedings the 19th Annual Conference for Novel Optical Systems Design and Optimization, San Diego, 2016. Google Scholar

[94] Piggott A Y, Lu J, Lagoudakis K G. Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer. Nat Photon, 2015, 9: 374-377 CrossRef ADS arXiv Google Scholar

[95] Shen B, Wang P, Polson R C. An integrated-nanophotonics polarization beamsplitter with 2.4$\times$2.4 $\mu$m$^2$ footprint. Nat Photon, 2015, 9: 378-382 CrossRef ADS Google Scholar

[96] Mak J C C, Sideris C, Jeong J. Binary particle swarm optimized 2$\times$2 power splitters in a standard foundry silicon photonic platform. Opt Lett, 2016, 41: 3868-3871 CrossRef ADS Google Scholar

[97] Majumder A, Shen B, Polson R. Ultra-compact polarization rotation in integrated silicon photonics using digital metamaterials. Opt Express, 2017, 25: 19721-19731 CrossRef ADS Google Scholar

[98] Xu K, Liu L, Wen X. Integrated photonic power divider with arbitrary power ratios. Opt Lett, 2017, 42: 855-858 CrossRef ADS arXiv Google Scholar

[99] Piggott A Y, Petykiewicz J, Su L. Fabrication-constrained nanophotonic inverse design. Sci Rep, 2017, 7: 1786 CrossRef PubMed ADS arXiv Google Scholar

[100] Liu V, Fan S H. Compact bends for multi-mode photonic crystal waveguides with high transmission and suppressed modal crosstalk. Opt Express, 2013, 21: 8069-8075 CrossRef ADS Google Scholar

[101] Chen H, Poon A W. Low-loss multimode-interference-based crossings for silicon wire waveguides. IEEE Photon Technol Lett, 2006, 18: 2260-2262 CrossRef ADS Google Scholar

[102] Bogaerts W, Dumon P, Thourhout D V. Low-loss, low-cross-talk crossings for silicon-on-insulator nanophotonic waveguides. Opt Lett, 2007, 32: 2801-2803 CrossRef ADS Google Scholar

[103] Kim S H, Cong G W, Kawashima H, et al. Low-crosstalk waveguide crossing based on 1$\times$1 MMI structure of silicon-wire waveguide. In: Proceedings of Conference on Lasers and Electro-Optics Pacific Rim (CLEO-PR), Kyoto, 2013. Google Scholar

[104] Zhang Y, Hosseini A, Xu X C. Ultralow-loss silicon waveguide crossing using Bloch modes in index-engineered cascaded multimode-interference couplers. Opt Lett, 2013, 38: 3608-3611 CrossRef ADS Google Scholar

[105] Liu Y Y, Shainline J M, Zeng X G. Ultra-low-loss CMOS-compatible waveguide crossing arrays based on multimode Bloch waves and imaginary coupling. Opt Lett, 2014, 39: 335-338 CrossRef ADS arXiv Google Scholar

[106] Xu H N, Shi Y C. Dual-mode waveguide crossing utilizing taper-assisted multimode-interference couplers. Opt Lett, 2016, 41: 5381-5384 CrossRef ADS Google Scholar

[107] Sun C L, Yu Y, Zhang X L. Ultra-compact waveguide crossing for a mode-division multiplexing optical network. Opt Lett, 2017, 42: 4913-4916 CrossRef ADS Google Scholar

[108] van Campenhout J, Green W M, Assefa S. Low-power, 2$\times$2 silicon electro-optic switch with 110-nm bandwidth for broadband reconfigurable optical networks. Opt Express, 2009, 17: 24020-24029 CrossRef ADS Google Scholar

[109] Dong P, Liao S R, Liang H. Submilliwatt, ultrafast and broadband electro-optic silicon switches. Opt Express, 2010, 18: 25225-25231 CrossRef ADS Google Scholar

[110] Yang M, Green W M J, Assefa S. Non-blocking 4$\times$4 electro-optic silicon switch for on-chip photonic networks. Opt Express, 2011, 19: 47-54 CrossRef ADS Google Scholar

[111] Han S Y, Seok T J, Quack N. Large-scale silicon photonic switches with movable directional couplers. Optica, 2015, 2: 370-375 CrossRef Google Scholar

[112] Murray K, Lu Z, Jayatilleka H. Dense dissimilar waveguide routing for highly efficient thermo-optic switches on silicon. Opt Express, 2015, 23: 19575-19585 CrossRef ADS Google Scholar

[113] Chen S T, Shi Y C, He S L. Low-loss and broadband 2$\times$2 silicon thermo-optic Mach-Zehnder switch with bent directional couplers. Opt Lett, 2016, 41: 836-839 CrossRef ADS Google Scholar

[114] Seok T J, Quack N, Han S. Large-scale broadband digital silicon photonic switches with vertical adiabatic couplers. Optica, 2016, 3: 64-70 CrossRef Google Scholar

[115] Wilkes C M, Qiang X, Wang J. 60 dB high-extinction auto-configured Mach-Zehnder interferometer. Opt Lett, 2016, 41: 5318-5321 CrossRef ADS arXiv Google Scholar

[116] Nikolova D, Calhoun D M, Liu Y. Modular architecture for fully non-blocking silicon photonic switch fabric. Microsyst Nanoeng, 2017, 3: 16071 CrossRef Google Scholar

[117] P\'{e}rez D, Gasulla I, Crudgington L. Multipurpose silicon photonics signal processor core. Nat Commun, 2017, 8: 636 CrossRef PubMed ADS Google Scholar

[118] Seok T J, Kopp V I, Neugroschl D, et al. High density optical packaging of high radix silicon photonic switches. In: Proceedings of Optical Fiber Communication Conference and Exhibition (OFC), Los Angeles, 2017. Google Scholar

[119] Sun C L, Yu Y, Chen G Y. Integrated switchable mode exchange for reconfigurable mode-multiplexing optical networks. Opt Lett, 2016, 41: 3257-3260 CrossRef ADS Google Scholar

[120] Huang Q D, Jin W, Chiang K S. Broadband mode switch based on a three-dimensional waveguide Mach-Zehnder interferometer. Opt Lett, 2017, 42: 4877-4880 CrossRef ADS Google Scholar

[121] Ding Y H, Kamchevska V, Dalgaard K. Reconfigurable SDM switching using novel silicon photonic integrated circuit. Sci Rep, 2016, 6: 39058 CrossRef PubMed ADS arXiv Google Scholar

[122] Wu X R, Xu K, Dai D X, et al. Mode division multiplexing switch for on-chip optical interconnects. In: Proceedings of OptoElectronics and Communications Conference (OECC), Niigata, 2016. Google Scholar

[123] Stern B, Zhu X, Chen C P. On-chip mode-division multiplexing switch. Optica, 2015, 2: 530-535 CrossRef Google Scholar

[124] Zhang Y, Zhu Q M, He Y, et al. Silicon 1$\times$2 mode- and polarization-selective switch. In: Proceedings of Optical Fiber Communications Conference and Exhibition (OFC), Los Angeles, 2017. Google Scholar

[125] Jia H, Zhou T, Zhang L. Optical switch compatible with wavelength division multiplexing and mode division multiplexing for photonic networks-on-chip. Opt Express, 2017, 25: 20698-20707 CrossRef ADS Google Scholar

[126] Chan W Y, Chan H P. Reconfigurable two-mode mux/demux device. Opt Express, 2014, 22: 9282-9290 CrossRef ADS Google Scholar

[127] Sun C L, Yu Y, Chen G Y. On-chip switch for reconfigurable mode-multiplexing optical network. Opt Express, 2016, 24: 21722-21728 CrossRef ADS Google Scholar

[128] Xiong Y L, Priti R B, Liboiron L O. High-speed two-mode switch for mode-division multiplexing optical networks. Optica, 2017, 4: 1098-1102 CrossRef Google Scholar

[129] Chen S T, Shi Y C, He S L. Compact eight-channel thermally reconfigurable optical add/drop multiplexers on silicon. IEEE Photon Technol Lett, 2016, 28: 1874-1877 CrossRef ADS Google Scholar

[130] Wang S P, Wu H, Tsang H K. Monolithically integrated reconfigurable add-drop multiplexer for mode-division-multiplexing systems. Opt Lett, 2016, 41: 5298-5301 CrossRef ADS Google Scholar

[131] Wang S P, Feng X L, Gao S M. On-chip reconfigurable optical add-drop multiplexer for hybrid wavelength/mode-division-multiplexing systems. Opt Lett, 2017, 42: 2802-2805 CrossRef ADS Google Scholar

[132] Xiao X, Xu H, Li X Y, et al. 60 Gbit/s silicon modulators with enhanced electro-optical efficiency. In: Proceedings of Optical Fiber Communication Conference and Exposition (OFC), Anaheim, 2013. Google Scholar

[133] Timurdogan E, Sorace-Agaskar C M, Sun J. An ultralow power athermal silicon modulator. Nat Commun, 2014, 5: 4008 CrossRef PubMed ADS Google Scholar

[134] Xiong C, Gill D M, Proesel J E. Monolithic 56 Gb/s silicon photonic pulse-amplitude modulation transmitter. Optica, 2016, 3: 1060-1065 CrossRef Google Scholar

[135] Dubé-Demers R, LaRochelle S, Shi W. Ultrafast pulse-amplitude modulation with a femtojoule silicon photonic modulator. Optica, 2016, 3: 622-627 CrossRef Google Scholar

[136] Vivien L, Polzer A, Marris-Morini D. Zero-bias 40 Gbit/s germanium waveguide photodetector on silicon. Opt Express, 2012, 20: 1096-1101 CrossRef ADS Google Scholar

[137] DeRose C T, Trotter D C, Zortman W A. Ultra compact 45 GHz CMOS compatible Germanium waveguide photodiode with low dark current. Opt Express, 2011, 19: 24897-24904 CrossRef ADS Google Scholar

[138] Chen G Y, Yu Y, Deng S P. Bandwidth improvement for germanium photodetector using wire bonding technology. Opt Express, 2015, 23: 25700-25706 CrossRef ADS Google Scholar

[139] Chen G Y, Yu Y, Xiao X. High speed and high power polarization insensitive germanium photodetector with lumped structure. Opt Express, 2016, 24: 10030-10039 CrossRef ADS Google Scholar

[140] Michel J, Liu J, Kimerling L C. High-performance Ge-on-Si photodetectors. Nat Photon, 2010, 4: 527-534 CrossRef ADS Google Scholar

[141] Logan D F, Velha P, Sorel M. Defect-enhanced silicon-on-insulator waveguide resonant photodetector with high sensitivity at 1.55 $\mu$m. IEEE Photon Technol Lett, 2010, 22: 1530-1532 CrossRef ADS Google Scholar

[142] Preston K, Lee Y H D, Zhang M. Waveguide-integrated telecom-wavelength photodiode in deposited silicon. Opt Lett, 2011, 36: 52-54 CrossRef ADS Google Scholar

[143] Mehta K K, Orcutt J S, Shainline J M. Polycrystalline silicon ring resonator photodiodes in a bulk complementary metal-oxide-semiconductor process. Opt Lett, 2014, 39: 1061-1064 CrossRef ADS Google Scholar

[144] Alloatti L, Ram R J. Resonance-enhanced waveguide-coupled silicon-germanium detector. Appl Phys Lett, 2016, 108: 071105 CrossRef ADS arXiv Google Scholar

[145] Brouckaert J, Roelkens G, Van Thourhout D. Thin-film III-V photodetectors integrated on silicon-on-insulator photonic ICs. J Lightwave Technol, 2007, 25: 1053-1060 CrossRef ADS Google Scholar

[146] Park H, Fang A W, Jones R. A hybrid AlGaInAs-silicon evanescent waveguide photodetector. Opt Express, 2007, 15: 6044-6052 CrossRef ADS Google Scholar

[147] Ng D K T, Wang Q, Pu J. Demonstration of heterogeneous III-V/Si integration with a compact optical vertical interconnect access. Opt Lett, 2013, 38: 5353-5356 CrossRef ADS Google Scholar

[148] Koppens F H L, Mueller T, Avouris P. Photodetectors based on graphene, other two-dimensional materials and hybrid systems. Nat Nanotech, 2014, 9: 780-793 CrossRef PubMed ADS Google Scholar

[149] Bie Y Q, Grosso G, Heuck M. A MoTe$_{2}$-based light-emitting diode and photodetector for silicon photonic integrated circuits. Nat Nanotech, 2017, 12: 1124-1129 CrossRef PubMed ADS Google Scholar

[150] Dong P, Xie C J, Buhl L L. Monolithic polarization diversity coherent receiver based on 120-degree optical hybrids on silicon. Opt Express, 2014, 22: 2119-2125 CrossRef ADS Google Scholar

[151] Doerr C R, Winzer P J, Chen Y K. Monolithic polarization and phase diversity coherent receiver in silicon. J Lightwave Technol, 2010, 28: 520-525 CrossRef ADS Google Scholar

[152] Ding R, Liu Y, Li Q. A compact low-power 320-Gb/s WDM transmitter based on silicon microrings. IEEE Photonic J, 2014, 6: 1-8 CrossRef Google Scholar

[153] Gill D M, Proesel J E, Xiong C. Demonstration of a high extinction ratio monolithic CMOS integrated nanophotonic transmitter and 16 Gb/s optical link. IEEE J Sel Top Quant Electron, 2015, 21: 212-222 CrossRef Google Scholar

[154] Chen K X, Huang Q S, Zhang J H. Wavelength-multiplexed duplex transceiver based on III-V/Si hybrid integration for off-chip and on-chip optical interconnects. IEEE Photonic J, 2016, 8: 1-10 CrossRef Google Scholar

[155] Zhang C, Zhang S J, Peters J D. 8$\times$8$\times$40 Gbps fully integrated silicon photonic network on chip. Optica, 2016, 3: 785-786 CrossRef Google Scholar

[156] Chen G Y, Yu Y, Zhou D, et al. Three modes multiplexed photonic integrated circuit for large capacity optical interconnection. In: Proceedings of Optical Fiber Communications Conference and Exhibition (OFC), Los Angeles, 2017. Google Scholar

[157] Chen G Y, Yu Y, Ye M Y. Switchable in-line monitor for multi-dimensional multiplexed photonic integrated circuit. Opt Express, 2016, 24: 14841-14850 CrossRef ADS Google Scholar

[158] Wu X R, Huang C R, Xu K. 3$\times$104 Gb/s single-$\lambda$ interconnect of mode-division multiplexed network with a multicore fiber. J Lightwave Technol, 2018, 36: 318-324 CrossRef ADS Google Scholar

Copyright 2019 Science China Press Co., Ltd. 《中国科学》杂志社有限责任公司 版权所有

京ICP备18024590号-1