logo

SCIENCE CHINA Information Sciences, Volume 61, Issue 4: 040303(2018) https://doi.org/10.1007/s11432-018-9386-5

Network protocol architectures for future deep-space internetworking

More info
  • ReceivedFeb 27, 2018
  • AcceptedMar 15, 2018
  • PublishedMar 19, 2018

Abstract

In the next two decades, humans are going to experience a grand age of deep-space exploration, especially in Mars and Lunar spaces.These relatively frequent and long-term activities provide the opportunity, and at the same time, demands the necessity for a true interplanetary network as an essential infrastructure for future deep-space exploration.In this study, we try to provide a picture and a perspective in the current network protocol architectures for future deep-space internetworking.We first investigate the recent technical advances for deep-space internetworking and the challenges to their network protocol architecture.Detailed technical characteristics of three effective network protocol architectures are presented.A special focus is casted on delay tolerant networking (DTN), which is a dedicated network protocol architecture for deep-space internetworking.Finally, several open questions in DTN for future deep-space internetworking are proposed for further study.


Acknowledgment

This work was supported by National Natural Science Foundation of China (Grant No. 61032003), Training Program of the Major Research Plan of the National Natural Science Foundation of China (Grant No. 91338112), and National Science Fund for Distinguished Young Scholars (Grant No. 1525103).


References

[1] International Telecommunication Union. ITU-R Radio Regulations, Article 1, Terms and definitions, Section VIII, Technical terms relating to space, paragraph 1.177. http://life.itu.int/radioclub/rr/art1.pdf. Google Scholar

[2] Ning X, Li Z, Wu W. Recursive adaptive filter using current innovation for celestial navigation during the Mars approach phase. Sci China Inf Sci, 2017, 60: 032205 CrossRef Google Scholar

[3] Burleigh S, Cerf V G, Crowcroft J. Space for Internet and Internet for space. Ad Hoc Networks, 2014, 23: 80-86 CrossRef Google Scholar

[4] de Cola T, Paolini E, Liva G. Reliability options for data communications in the future deep-space missions. Proc IEEE, 2011, 99: 2056-2074 CrossRef Google Scholar

[5] Wang R, Taleb T, Jamalipour A. Protocols for reliable data transport in space Internet. IEEE Commun Surv Tutorials, 2009, 11: 21-32 CrossRef Google Scholar

[6] Vasilakos A, Zhang Y, Spyropoulos T V. Delay Tolerant Networks: Protocols and Applications. Boca Raton: CRC Press, 2016. 288--313. Google Scholar

[7] Zhang W, Yang G N, Jiang F, et al. Licklider transmission protocol for GEO-relayed space internetworking. Wirel Netw, 2018, 1--11. Google Scholar

[8] Farrell S, Cahill V, Geraghty D, et al. When TCP breaks: delay- and disruption- tolerant networking. IEEE Internet Comput, 2006, 10: 72-78. Google Scholar

[9] Hooke A J. The interplanetary Internet. In: Proceedings of the 3rd Annual Symposium on Advanced Radio Technologies, Colorado, 2000. 1. Google Scholar

[10] Akyildiz I F, Akan B, Chen C. InterPlaNetary Internet: state-of-the-art and research challenges. Comput Netw, 2003, 43: 75-112 CrossRef Google Scholar

[11] Akan O B, Fang J, Akyildiz I F. TP-Planet: a reliable transport protocol for interplanetary Internet. IEEE J Sel Areas Commun, 2004, 22: 348-361 CrossRef Google Scholar

[12] Burleigh S, Hooke A, Torgerson L, et al. Delay-tolerant networking: an approach to interplanetary internet. IEEE Commun Mag, 2003, 41: 128--136. Google Scholar

[13] Burleigh S, Cerf V, Durst R. The interplanetary Internet: a communications infrastructure for Mars exploration. Acta Astronaut, 2003, 53: 365-373 CrossRef ADS Google Scholar

[14] Bozzi M, Cametti M, Fornaroli M. Future architectures for European space agency deep-space ground stations [antenna applications corner]. IEEE Antennas Propag Mag, 2012, 54: 254-263 CrossRef ADS Google Scholar

[15] National Aeronautics and Space Administration. SCaN 101. https://www.nasa.gov/sites/default/files/files/ SCaN_101_2013.pdf. Google Scholar

[16] Bagri D S, Statman J I, Gatti M S. Proposed array-based deep space network for NASA. Proc IEEE, 2007, 95: 1916-1922 CrossRef Google Scholar

[17] Hemmati H. Deep Space Optical Communications. Hoboken: John Wiley & Sons, Inc., 2006. 1--82. Google Scholar

[18] Wu W, Chen M, Zhang Z. Overview of deep space laser communication. Sci China Inf Sci, 2018, 61: 040301 CrossRef Google Scholar

[19] Consultative Committee for Space Data Systems. Real-time weather and atmospheric characterization data. CCSDS 140.1-G-1. https://public.ccsds.org/Pubs/140x1g1.pdf. 2017. Google Scholar

[20] NASA space communication and navigation program next generation space relay architecture concept study. Space relay architecture background information. NNC16ZLC002L. https://elibrary.gsfc.nasa.gov/_assets/doclibBidder/tech_docs/NASA. 2016. Google Scholar

[21] Munger J, Ladrach W, Hetrick J. The next generation space relay architectures. In: Proceedings of the 34th AIAA International Communications Satellite Systems Conference, Cleveland, 2016. 1--18. Google Scholar

[22] Reinhart R C, Schier J S, Israel D J, et al. Enabling future science and human exploration with NASA's next generation near earth and deep space communications and navigation architecture. In: Proceedings of International Astronautical Congress, Adelaid, 2017. 1--10. Google Scholar

[23] Rosborough V, Gambini F, Snyder J, et al. Integrated transmitter for deep space optical communications. In: Proceedings of 2016 IEEE Avionics and Vehicle Fiber-Optics and Photonics Conference, Long Beach, 2016. 207--208. Google Scholar

[24] Brooks D E, Eddy W, Johnson S K, et al. In-space networking on NASA's SCaN testbed. In: Proceedings of the 34th AIAA International Communications Satellite Systems Conference, Cleveland, 2016. 1--9. Google Scholar

[25] Brandon C, Chapin P. The use of SPARK in a complex spacecraft. ACM SIGAda Ada Lett, 2016, 36: 18--21. Google Scholar

[26] Sabbagh A, Wang R, Zhao K, et al. Bundle protocol over highly asymmetric deep-space channels. IEEE Trans Wirel Commun, 2016, 16: 2478--2489. Google Scholar

[27] Farrell S, Cahill V. Security considerations in space and delay tolerant networks. In: Proceedings of the 2nd IEEE International Conference on Space Mission Challenges for Information Technology, Pasadena, 2016. 1--8. Google Scholar

[28] Cath C, Floridi L. The design of the Internet's architecture by the Internet engineering task force (IETF) and human rights. Sci Eng Ethics, 2017, 23: 449-468 CrossRef PubMed Google Scholar

[29] Mukherjee J, Ramamurthy B. Communication technologies and architectures for space network and interplanetary Internet. IEEE Commun Surv Tutorials, 2013, 15: 881-897 CrossRef Google Scholar

[30] Akyildiz I F, Akan O B, Chen C, et al. The state of the art in interplanetary Internet. IEEE Commun Mag, 2004, 42: 108--118. Google Scholar

[31] Consultative Committee for Space Data Systems. Space packet protocol. CCSDS 133.0-B-1. https://public.ccsds.org/Pubs/133x0b1c2.pdf. 2003. Google Scholar

[32] Consultative Committee for Space Data Systems. Space Communications Protocol Specification (SCPS)-Transport Protocol. CCSDS 714.0-B-2. https://public.ccsds.org/pubs/714x0b2.pdf. 2006. Google Scholar

[33] Consultative Committee for Space Data Systems. IP over CCSDS Space Links. CCSDS 702.1-B-1. https://public.ccsds.org/Pubs/702x1b1c1_tc1413.pdf. 2012. Google Scholar

[34] Consultative Committee for Space Data Systems. Encapsulation Service. CCSDS 133.1-B-2. https://public.ccsds.org/Pubs/133x1b2c2.pdf. 2009. Google Scholar

[35] Consultative Committee for Space Data Systems. TC Space Data Link Protocol. CCSDS 232.0-B-2. https://public.ccsds.org/Pubs/232x0b3.pdf. 2010. Google Scholar

[36] Consultative Committee for Space Data Systems. TM Space Data Link Protocol. CCSDS 132.0-B-1. https://public.ccsds.org/Pubs/132x0b2.pdf.2003. Google Scholar

[37] Consultative Committee for Space Data Systems. AOS Space Data Link Protocol. CCSDS 732.0-B-2. https://public.ccsds.org/Pubs/732x0b2c1s_tc1230.pdf. 2006. Google Scholar

[38] Consultative Committee for Space Data Systems. Proximity-1 Space Link Protocol-Data Link Layer. CCSDS 211.0-B-5. https://public.ccsds.org/Pubs/211x0b5.pdf.2013. Google Scholar

[39] Cheng M P, Clare L P. Prototyping IP over CCSDS for manned space applications. In: Proceedings of 2010 SpaceOps Conference, Huntsville, 2010. 1--14. Google Scholar

[40] Consultative Committee for Space Data Systems. CCSDS File Delivery Protocol (CFDP). CCSDS 727.0-B-4. https://public.ccsds.org/pubs/727x0b4.pdf. 2007. Google Scholar

[41] Burleigh S. Operating CFDP in the interplanetary Internet. In: Proceedings of SpaceOps 2002, Houston, 2002. 1--6. Google Scholar

[42] Wang R, Shrestha B L, Wu X. Unreliable CCSDS file delivery protocol (CFDP) over cislunar communication links. IEEE Trans Aerosp Electron Syst, 2010, 46: 147-169 CrossRef ADS Google Scholar

[43] Yang Z, Li H, Jiao J. CFDP-based two-hop relaying protocol over weather-dependent Ka-band space channel. IEEE Trans Aerosp Electron Syst, 2015, 51: 1357-1374 CrossRef ADS Google Scholar

[44] Sanders F A, Jones G, Levesque M. Transfer of files between the Deep Impact spacecrafts and the ground data system using CFDP: a case study. In: Proceedings of 2007 IEEE Aerospace Conference, Big Sky, 2007. 1--5. Google Scholar

[45] de Cola T, Ernst H, Marchese M. Performance analysis of CCSDS File Delivery Protocol and erasure coding techniques in deep space environments. Comput Netw, 2007, 51: 4032-4049 CrossRef Google Scholar

[46] Jiao J , Guol Q , Zhang Q Y . Packets interleaving CCSDS file delivery protocol in deep space communication. IEEE Aerosp Electron Syst Mag, 2011, 26: 5-11 CrossRef Google Scholar

[47] Fall K, Farrell S. DTN: an architectural retrospective. IEEE J Sel Areas Commun, 2008, 26: 828-836 CrossRef Google Scholar

[48] Consultative Committee for Space Data Systems. CCSDS Bundle Protocol Specification. CCSDS 734.2-B-1. https://public.ccsds.org/Pubs/734x2b1.pdf. 2015. Google Scholar

[49] Heimlicher S, Baumann R, May M, et al. The transport layer revisited. In: Proceedings of the 2nd International Conference on Communications Systems Software and Middleware, Bangalore, 2007. 1--8. Google Scholar

[50] Papastergiou G, Samaras C V, Tsaoussidis V. Where does transport layer fit into space dtn architecture? In: Proceedings of the 5th Advanced Satellite Multimedia Systems Conference and the 11th Signal Processing for Space Communications Workshop, Cagliari, 2010. 81--88. Google Scholar

[51] Papastergiou G, Psaras I, Tsaoussidis V. Deep-space transport protocol: a novel transport scheme for space DTNs. Comput Commun, 2009, 32: 1757-1767 CrossRef Google Scholar

[52] Samaras C V, Tsaoussidis V. Design of delay-tolerant transport protocol (DTTP) and its evaluation for Mars. Acta Astronaut, 2010, 67: 863-880 CrossRef ADS Google Scholar

[53] Papastergiou G, Alexiadis I, Burleigh S. Delay tolerant payload conditioning protocol. Comput Netw, 2014, 59: 244-263 CrossRef Google Scholar

[54] ION-DTN: Delay-Tolerant Networking suitable for use in spacecraft. Version 3.6.1. NASA JPL. 2018. Google Scholar

[55] Koutsogiannis E, Tsapeli F, Tsaoussidis V. Bundle layer end-to-end retransmission mechanism. In: Proceedings of 2011 Baltic Congress on Future Internet Communications, Riga, 2011. 109--115. Google Scholar

[56] de Cola T, Ernst H, Marchese M. Performance analysis of CCSDS File Delivery Protocol and erasure coding techniques in deep space environments. Comput Netw, 2007, 51: 4032-4049 CrossRef Google Scholar

[57] Hou D, Zhao K. Application layer channel coding for space DTN. In: Proceedings of 2017 International Conference on Machine Learning and Intelligent Communications, Weihai, 2017. 347--354. Google Scholar

[58] Cola T D, Marchese M. Joint use of custody transfer and erasure codes in DTN space networks: benefits and shortcomings. In: Proceedings of 2010 IEEE Global Telecommunications Conference, Miami, 2010. 1--5. Google Scholar

[59] Gu S, Jiao J, Yang Z, et al. RCLTP: a rateless coding-based Licklider transmission protocol in space delay/disrupt tolerant network. In: Proceedings of 2013 International Conference on Wireless Communications & Signal Processing (WCSP), Hangzhou, 2013. 1--6. Google Scholar

[60] Lenas S A, Burleigh S C, Tsaoussidis V. Reliable data streaming over delay tolerant networks. In: Proceedings of 2012 International Conference on Wired/Wireless Internet Communications, Santorini, 2012. 358--365. Google Scholar

[61] Lenas S A, Burleigh S C, Tsaoussidis V. Bundle streaming service: design, implementation and performance evaluation. Trans Emerging Tel Tech, 2015, 26: 905-917 CrossRef Google Scholar

[62] Burleigh S. Contact graph routing IETF Internet draft. Internet-Draft. https://tools.ietf.org/html/draft-burleigh-dtnrg-cgr-00. 2009. Google Scholar

[63] Wang G, Burleigh S, Wang R, et al. Scoping contact graph-routing scalability: investigating the system's usability in space-vehicle communication networks. IEEE Veh Technol Mag, 2016, 11: 1556--6072. Google Scholar

[64] Araniti G, Bezirgiannidis N, Birrane E, et al. Contact graph routing in DTN space networks: overview, enhancements and performance. IEEE Commun Mag, 2015, 53: 38--46. Google Scholar

[65] Birrane E, Burleigh S, Kasch N. Analysis of the contact graph routing algorithm: bounding interplanetary paths. Acta Astronaut, 2012, 75: 108-119 CrossRef ADS Google Scholar

[66] Kazz G J, Burleigh S C, Cheung K M, et al. Evolution of the Mars relay network end-to-end information system in the Mars Human Era (2030-2040). In: Proceedings of 2016 SpaceOps Conference, Daejeon, 2016. 1--10. Google Scholar

[67] Jiao J, Hu Y, Zhang Q. Performance modeling of LTP-HARQ schemes over OSTBC-MIMO channels for hybrid satellite terrestrial networks. IEEE Access, 2018, 6: 5256-5268 CrossRef Google Scholar

Copyright 2019 Science China Press Co., Ltd. 《中国科学》杂志社有限责任公司 版权所有

京ICP备18024590号-1