SCIENCE CHINA Information Sciences, Volume 61 , Issue 6 : 060414(2018) https://doi.org/10.1007/s11432-018-9396-7

Flexible ultra-wideband rectangle monopole antenna with O-slot insertion design

More info
  • ReceivedJan 4, 2018
  • AcceptedMar 21, 2018
  • PublishedMay 11, 2018


Slot insertion design has proven to be an effective method to increase the bandwidth in the design of microstrip antenna. In this paper, the slot insertion design is applied to the flexible ultra-wideband (UWB) antenna. A flexible rectangular UWB monopole antenna is proposed and fabricated with O-slot design using the transfer printing method. By simulating the influence of O-slot design parameters on electromagnetic performance of the antenna, an optimized antenna design is obtained to keep the reflection coefficient under $-$10 dB with the frequencies ranging from 3.5 to 17.8 GHz when the antenna is bent with curvature radius as small as 11 mm. The effect of bending on the reflection coefficient is analyzed. Mechanical simulations indicate that the existence of O-slot can reduce the strain concentration on the metal layer of antenna, which enhances the flexibility of the antenna.


This work was supported by National Basic Research Program of China (973) (Grant No. 2015CB351905), Technology Innovative Research Team of Sichuan Province of China (Grant No. 2015TD0005), and 111 project (Grant No. B13042).


[1] Lacour S P, Courtine G, Guck J. Materials and technologies for soft implantable neuroprostheses. Nat Rev Mater, 2016, 1: 16063 CrossRef ADS Google Scholar

[2] Kim D H, Lu N, Ma R. Epidermal Electronics. Science, 2011, 333: 838-843 CrossRef PubMed ADS Google Scholar

[3] Son D, Lee J, Qiao S. Multifunctional wearable devices for diagnosis and therapy of movement disorders. Nat Nanotech, 2014, 9: 397-404 CrossRef PubMed ADS Google Scholar

[4] Jeong J W, Yeo W H, Akhtar A. Materials and optimized designs for human-machine interfaces via epidermal electronics. Adv Mater, 2013, 25: 6839-6846 CrossRef PubMed Google Scholar

[5] Yeo W H, Kim Y S, Lee J. Multifunctional epidermal electronics printed directly onto the skin. Adv Mater, 2013, 25: 2773-2778 CrossRef PubMed Google Scholar

[6] Miller L E. Why UWB? A Review of Ultrawideband Technology. Gaithersburg: National Institute of Standards and Technology, 2003. 1--72. Google Scholar

[7] Liang J X, Chiau C C, Chen X D. Study of a printed circular disc monopole antenna for UWB systems. IEEE Trans Antenn Propagat, 2005, 53: 3500-3504 CrossRef ADS Google Scholar

[8] Choi S H, Park J K, Kim S K. A new ultra-wideband antenna for UWB applications. Microw Opt Technol Lett, 2004, 40: 399-401 CrossRef Google Scholar

[9] Vendik I B, Rusakov A, Kanjanasit K. Ultrawideband (UWB) planar antenna with single-, dual-, and triple-band notched characteristic based on electric ring resonator. Antenn Wirel Propag Lett, 2017, 16: 1597-1600 CrossRef ADS Google Scholar

[10] Bhalla R, Shafai L. Broadband patch antenna with a circular arc shaped slot. In: Proceedings of IEEE Antennas and Propagation Society International Symposium, San Antonio, 2002. 394--397. Google Scholar

[11] Deshmukh A, Ray K. Analysis of broadband variations of U-slot cut rectangular microstrip antennas. IEEE Antenn Propag Mag, 2015, 57: 181--193. Google Scholar

[12] Lee K F, Yang S L S, Kishk A A, et al. The versatile U-slot patch antenna. IEEE Antenn Propag Mag, 2010, 52: 71--88. Google Scholar

[13] Lee K F, Yang S L S, Kishk A A. Dual- and multiband U-slot patch antennas. Antenn Wirel Propag Lett, 2008, 7: 645-647 CrossRef ADS Google Scholar

[14] Weigand S, Huff G H, Pan K H. Analysis and design of broad-band single-layer rectangular u-slot microstrip patch antennas. IEEE Trans Antenn Propagat, 2003, 51: 457-468 CrossRef ADS Google Scholar

[15] Yeboah-Akowuah B, Kallos E, Palikaras G, et al. A novel compact planar inverted-F antenna for biomedical applications in the MICS band. In: Proceedings of IEEE European Conference on Antennas and Propagation, The Hague, 2014. 822--824. Google Scholar

[16] Khaleel H R, Al-Rizzo H M, Rucker D G. A compact polyimide-based UWB antenna for flexible electronics. Antenn Wirel Propag Lett, 2012, 11: 564-567 CrossRef ADS Google Scholar

[17] Agneessens S, Rogier H. Compact half diamond dual-band textile HMSIW on-body antenna. IEEE Trans Antenn Propagat, 2014, 62: 2374-2381 CrossRef ADS Google Scholar

[18] Agneessens S, Lemey S, Vervust T. Wearable, small, and robust: the circular quarter-mode textile antenna. Antenn Wirel Propag Lett, 2015, 14: 1482-1485 CrossRef ADS Google Scholar

[19] Yan S, Soh P J, Vandenbosch G A E. Dual-band textile MIMO antenna based on substrate-integrated waveguide (SIW) technology. IEEE Trans Antenn Propagat, 2015, 63: 4640-4647 CrossRef ADS Google Scholar

[20] Soh P J, Vandenbosch G A E, Ooi S L. Design of a Broadband All-Textile Slotted PIFA. IEEE Trans Antenn Propagat, 2012, 60: 379-384 CrossRef ADS Google Scholar

[21] El Hajj W, Person C, Wiart J. A novel investigation of a broadband integrated inverted-F antenna design. Google Scholar

[22] Wang Z, Lee L Z, Psychoudakis D. Embroidered multiband body-worn antenna for GSM/PCS/WLAN communications. IEEE Trans Antenn Propagat, 2014, 62: 3321-3329 CrossRef ADS Google Scholar

[23] Zhu S, Langley R. Dual-band wearable textile antenna on an EBG substrate. IEEE Trans Antenn Propagat, 2009, 57: 926-935 CrossRef ADS Google Scholar

[24] Raad H R, Abbosh A I, Al-Rizzo H M. Flexible and compact AMC based antenna for telemedicine applications. IEEE Trans Antenn Propagat, 2013, 61: 524-531 CrossRef ADS Google Scholar

[25] Yan S, Soh P J, Vandenbosch G A E. Low-profile dual-band textile antenna with artificial magnetic conductor plane. IEEE Trans Antenn Propagat, 2014, 62: 6487-6490 CrossRef ADS Google Scholar

[26] Lui K W, Murphy O H, Toumazou C. A wearable wideband circularly polarized textile antenna for effective power transmission on a wirelessly-powered sensor platform. IEEE Trans Antenn Propagat, 2013, 61: 3873-3876 CrossRef ADS Google Scholar

[27] Hertleer C, Rogier H, Vallozzi L. A textile antenna for off-body communication integrated into protective clothing for firefighters. IEEE Trans Antenn Propagat, 2009, 57: 919-925 CrossRef ADS Google Scholar

[28] Locher I, Klemm M, Kirstein T. Design and characterization of purely textile patch antennas. IEEE Trans Adv Packag, 2006, 29: 777-788 CrossRef Google Scholar

[29] Yan Z, Pan T, Yao G. Highly stretchable and shape-controllable three-dimensional antenna fabricated by “Cut-Transfer-Release" method. Sci Rep, 2017, 7: 42227 CrossRef PubMed ADS Google Scholar

[30] Zhang Y, Wang S, Li X. Experimental and theoretical studies of serpentine microstructures bonded to prestrained elastomers for stretchable electronics. Adv Funct Mater, 2014, 24: 2028-2037 CrossRef Google Scholar

[31] Fan J A, Yeo W H, Su Y. Fractal design concepts for stretchable electronics. Nat Commun, 2014, 5: 3266 CrossRef PubMed ADS Google Scholar

[32] Jang K I, Li K, Chung H U. Self-assembled three dimensional network designs for soft electronics. Nat Commun, 2017, 8: 15894 CrossRef PubMed ADS Google Scholar

  • Figure 1

    (Color online) (a) Top view and (b) bottom view of the geometric layout of the O-slot UWB antenna.

  • Figure 2

    (Color online) Simulation results of surface current distributions on the radiator of UWB RMA at three representative frequencies. (a)–(c) UWB RMA without O-slot; (d)–(f) UWB RMA with O-slot.

  • Figure 3

    (Color online) Simulated frequency response of the UWB RMA with/without O-slot.

  • Figure 4

    (Color online) The simulated reflection coefficient of O-slot inserted UWB RMA with different (a) feed position, $p$, and (b) deviation distance of the O-slot, $\delta$. The other parameters of antenna are fixed with the parameters shown in protectłinebreak Table 1.

  • Figure 5

    (Color online) The simulated reflection coefficient of O-slot inserted UWB RMA with (a) different width of O-slot, $s$, and (b) different radius of O-slot, $r$. The other parameters of antenna are fixed with the parameters shown in protectłinebreak Table 1.

  • Figure 6

    (Color online) FEA results of the strain distribution on Cu layer and the corresponding optical images of the antenna with O-slot when attached on cylinders with different curvature radius. (a) $R_{\rm~bend}$ = 28 mm; (b) $R_{\rm~bend}$ = 20 mm; (c) $R_{\rm~bend}$ = 13 mm; (d) $R_{\rm~bend}$ = 11 mm.

  • Figure 7

    (Color online) Simulated (dashed) and measured (solid) $S_{11}$ parameters of the UWB RMA with O-slot at the frequencies ranging from 3 to 18 GHz

  • Figure 8

    (Color online) Measured reflection coefficient of the UWB RMA with O-slot when attached on cylinders of different curvature radius.

  • Table 1   Parameters of the antenna shown in Figure
    Parameter Description Value (mm)
    Ls Substrate length 36.6
    Ws Substrate width 39
    $L$ Radiator length 18.3
    $W$ Radiator width 23
    $S$ Slot width 1
    $\delta$ Deviation distance of O-slot 2
    $p$ Feeding position 6
    Wg Microstrip width 2
    $r$ Radius of O-slot 6
    $h$ Thickness of dielectric layer 1.6
    gr Ground length 6.3

Copyright 2020 Science China Press Co., Ltd. 《中国科学》杂志社有限责任公司 版权所有

京ICP备17057255号       京公网安备11010102003388号