logo

SCIENCE CHINA Information Sciences, Volume 62, Issue 6: 062405(2019) https://doi.org/10.1007/s11432-018-9423-y

A 0.45-to-1.8 GHz synthesized injection-locked bang-bang phase locked loop with fine frequency tuning circuits

More info
  • ReceivedFeb 8, 2018
  • AcceptedApr 2, 2018
  • PublishedFeb 27, 2019

Abstract

This paper proposes a synthesized injection-locked bang-bang phased-locked loop (SILBBPLL) with high digital controlled oscillator (DCO) frequency resolution. The SILBBPLL is expressed with hardware description language and automatically placed & routed (APR) by using standard digital circuit design flow. As the mismatch issues of the circuits are not considered carefully during the APR design flow, the phase noise performance is severely deteriorated. We adopt pulse injection locking technique to improve the phase noise performance. The DCO frequency resolution is critical for reducing the reference spur in a digital injection-locked PLL. Therefore, we propose novel frequency tuning circuits to increase the DCO frequency resolution so that the reference spurs are reduced. The frequency tuning circuits consist of a standard cell based high-linearity output feedback DAC (OFDAC) and two custom varactors. The OFDAC is used to tune the frequency of the DCO with the custom varactor precisely. The custom varactor is firstly designed, added into the standard cell library, and APR with the standard cells. The SILBBPLL chip with a core area of 0.008 mm$^2$ is implemented in 65 nm CMOS process. When operating at 1.8 GHz, the measured results show that the root-mean-square (RMS) jitter integrated from 10 kHz to 100 MHz is 1.1 ps, and the power consumption is 1.5 mW with a 0.8-V supply. The proposed SILBBPLL achieves a figure-of-merit (FoM) of $-$237.4 dB and a reference spur of $-$50.9 dBc.


Acknowledgment

This work was supported by National Nature Science Foundation of China (Grant Nos. 61331003, 61474108, 61234003), and National Key Technology Research and Development Program of the Ministry of Science and Technology of China (Grant No. 2016ZX03001002).


References

[1] Staszewski R B, Balsara P T. All-Digital Frequency Synthesizer in Deep-Submicron CMOS. Hoboken: John Wiley and Sons, 2006. Google Scholar

[2] Weaver S, Hershberg B, Moon U K. Digitally Synthesized Stochastic Flash ADC Using Only Standard Digital Cells. IEEE Trans Circuits Syst I, 2014, 61: 84-91 CrossRef Google Scholar

[3] Waters A, Moon U K. A fully automated verilog-to-layout synthesized adc demonstrating 56db-sndr with 2mhz-BW. In: Proceedings of IEEE Asian Solid-State Circuits Conference (A-SSCC), 2015. Google Scholar

[4] Kim S J, Kim W, Song M Y, et al. 15.5 A 0.6 V 1.17 ps PVT-tolerant and synthesizable time-to-digital converter using stochastic phase interpolation with 16$\times$ spatial redundancy in 14 nm Fin-FET technology. In: Proceedings of IEEE International Solid-State Circuits Conference-(ISSCC), 2015. Google Scholar

[5] Youngmin Park , Wentzloff D D. An All-Digital 12 pJ/Pulse IR-UWB Transmitter Synthesized From a Standard Cell Library. IEEE J Solid-State Circuits, 2011, 46: 1147-1157 CrossRef ADS Google Scholar

[6] Choi Y H, Seong K, Kim B, et al. All-synthesizable 6 Gbps voltage-mode transmitter for serial link. In: Proceedings of IEEE Asian Solid-State Circuits Conference (A-SSCC), 2016. 245--248. Google Scholar

[7] Yang J C, Zhang Z, Liu L Y, et al. A 0.45-to-1.8 GHz fully synthesized injection locked bang-bang PLL with OFDAC to enhance DCO resolution. In: Proceedings of International Solid-State Device and Materials, 2017. 815--816. Google Scholar

[8] Zhang X, Jiang H, Zhang L. An Energy-Efficient ASIC for Wireless Body Sensor Networks in Medical Applications.. IEEE Trans Biomed Circuits Syst, 2010, 4: 11-18 CrossRef PubMed Google Scholar

[9] Zhang L W, Jiang H J, Wei J J, et al. A reconfigurable sliding-IF transceiver for 400 MHz/2.4 GHz IEEE 802.15.6/ZigBee WBAN hubs with only 21¶RE_DEFINE_STRING_PERCENT tuning range VCO. IEEE J Solid-State Circ, 2013, 48: 2705--2716. Google Scholar

[10] Siriburanon T, Kondo S, Kimura K. A 2.2 GHz -242 dB-FOM 4.2 mW ADC-PLL Using Digital Sub-Sampling Architecture. IEEE J Solid-State Circuits, 2016, 51: 1385-1397 CrossRef ADS Google Scholar

[11] Chen Z Z, Wang Y H, Shin J, et al. 14.9 sub-sampling all-digital fractional-N frequency synthesizer with -111dBc/Hz in-band phase noise and an FOM of -242dB. In: Proceedings of IEEE International Solid-State Circuits Conference-(ISSCC), 2015. Google Scholar

[12] Elkholy A, Talegaonkar M, Anand T, et al. 10.7 A 6.75-to-8.25 GHz 2.25 mW 190 $fs_{\rm~~rms}$-integrated-jitter PVT-insensitive injection-locked clock multiplier using all-digital continuous frequency-tracking loop in 65 nm CMOS. In: Proceedings of IEEE International Solid-State Circuits Conference (ISSCC), 2015. 188--190. Google Scholar

[13] Elkholy A, Elmallah A, Elzeftawi M, et al. 10.6 A 6.75-to-8.25 GHz, 250 $fs_{\rm~~rms}$-integrated-jitter 3.25 mW rapid on/off PVT-insensitive fractional-N injection-locked clock multiplier in 65 nm CMOS. In: Proceedings of IEEE International Solid-State Circuits Conference (ISSCC), 2016. 192--194. Google Scholar

[14] A Bang Bang Phase-Locked Loop Using Automatic Loop Gain Control and Loop Latency Reduction Techniques. IEEE J Solid-State Circuits, 2016, 51: 821-831 CrossRef ADS Google Scholar

[15] Park Y, Wentzloff D D. An all-digital PLL synthesized from a digital standard cell library in 65 nm CMOS. In: Proceedings of IEEE Custom Integrated Circuits Conference (CICC), 2011. Google Scholar

[16] Faisal M, Wentzloff D D. An automatically placed-and-routed ADPLL for the medradio band using PWM to enhance DCO resolution. In: Proceedings of IEEE Radio Frequency Integrated Circuits Symposium (RFIC), 2013. 115--118. Google Scholar

[17] Kim W S, Park J, Park H. Layout Synthesis and Loop Parameter Optimization of a Low-Jitter All-Digital Pixel Clock Generator. IEEE J Solid-State Circuits, 2014, 49: 657-672 CrossRef ADS Google Scholar

[18] A 2 GHz Synthesized Fractional-N ADPLL With Dual-Referenced Interpolating TDC. IEEE J Solid-State Circuits, 2016, 51: 391-400 CrossRef ADS Google Scholar

[19] Yang D S, Deng W, Liu B A, et al. An LC-DCO based synthesizable injection-locked PLL with an FoM of -250.3 dB. In: Proceedings of the 42nd European Solid-State Circuits Conference, 2016. 197--200. Google Scholar

[20] Cho H, Seong K, Choi K H, et al. 8.7 A 0.0047 mm$^2$ highly synthesizable TDC-and DCO-less fractional-N PLL with a seamless lock range of $f_{\rm~~REF}$ to 1 GHz. In: Proceedings of IEEE International Solid-State Circuits Conference (ISSCC), 2017. 154--155. Google Scholar

[21] Deng W, Yang D S, Ueno T, et al. 15.1 A 0.0066 mm$^2$ 780 $\mu$W fully synthesizable PLL with a current-output DAC and an interpolative phase-coupled oscillator using edge-injection technique. In: Proceedings of IEEE International Solid-State Circuits Conference (ISSCC), 2014. 266--267. Google Scholar

[22] Deng W, Yang D, Ueno T. A Fully Synthesizable All-Digital PLL With Interpolative Phase Coupled Oscillator, Current-Output DAC, and Fine-Resolution Digital Varactor Using Gated Edge Injection Technique. IEEE J Solid-State Circuits, 2015, 50: 68-80 CrossRef ADS Google Scholar

[23] Yang D, Deng W, Narayanan A T. A fully synthesizable injection-locked PLL with feedback current output DAC in 28 nm FDSOI. IEICE Electron Express, 2015, 12: 20150531-20150531 CrossRef Google Scholar

[24] Deng W, Yang D S, Narayanan A T, et al. 14.1 A 0.048 mm$^2$ 3 mW synthesizable fractional-N PLL with a soft injection-locking technique. In: Proceedings of IEEE International Solid-State Circuits Conference-(ISSCC), 2015. Google Scholar

[25] Tseng Y H, Yeh C W, Liu S I. A 2.25-2.7 GHz Area-Efficient Subharmonically Injection-Locked Fractional-N Frequency Synthesizer With a Fast-Converging Correlation Loop. IEEE Trans Circuits Syst I, 2017, 64: 811-822 CrossRef Google Scholar

[26] Zanuso M, Tasca D, Levantino S. Noise Analysis and Minimization in Bang-Bang Digital PLLs. IEEE Trans Circuits Syst II, 2009, 56: 835-839 CrossRef Google Scholar

[27] Marucci G, Levantino S, Maffezzoni P. Analysis and Design of Low-Jitter Digital Bang-Bang Phase-Locked Loops. IEEE Trans Circuits Syst I, 2014, 61: 26-36 CrossRef Google Scholar

[28] Tasca D, Zanuso M, Marzin G. A 2.9-4.0-GHz Fractional-N Digital PLL With Bang-Bang Phase Detector and 560-${\rm~~fs}_{\rm~~rms}$ Integrated Jitter at 4.5-mW Power. IEEE J Solid-State Circuits, 2011, 46: 2745-2758 CrossRef ADS Google Scholar

[29] Lee I T, Zeng K H, Liu S I. A 4.8-GHz Dividerless Subharmonically Injection-Locked All-Digital PLL With a FOM of $-$252.5 dB. IEEE Trans Circuits Syst II, 2013, 60: 547-551 CrossRef Google Scholar

[30] Pao-Lung Chen , Ching-Che Chung , Chen-Yi Lee . A portable digitally controlled oscillator using novel varactors. IEEE Trans Circuits Syst II, 2005, 52: 233-237 CrossRef Google Scholar

[31] Lee J, Wang H. Study of Subharmonically Injection-Locked PLLs. IEEE J Solid-State Circuits, 2009, 44: 1539-1553 CrossRef ADS Google Scholar

[32] Zhang Z, Liu L Y, Wu N J. A novel 2.4-to-3.6 GHz wideband subharmonically injection-locked PLL with adaptively-aligned injection timing. In: Proceedings of IEEE Asian Solid-State Circuits Conference (A-SSCC), 2014. 369--372. Google Scholar

[33] Wang R X, Dai F F. A 0.8 1.3 GHz multi-phase injection-locked PLL using capacitive coupled multi-ring oscillator with reference spur suppression. In: Proceedins of IEEE Custom Integrated Circuits Conference (CICC), 2017. Google Scholar

[34] Zhang Z, Liu L, Feng P. A 2.4-3.6-GHz Wideband Subharmonically Injection-Locked PLL With Adaptive Injection Timing Alignment Technique. IEEE Trans VLSI Syst, 2017, 25: 929-941 CrossRef Google Scholar

[35] Choi S, Yoo S, Lim Y. A PVT-Robust and Low-Jitter Ring-VCO-Based Injection-Locked Clock Multiplier With a Continuous Frequency-Tracking Loop Using a Replica-Delay Cell and a Dual-Edge Phase Detector. IEEE J Solid-State Circuits, 2016, 51: 1878-1889 CrossRef ADS Google Scholar

[36] Xiang Gao , Klumperink E A M, Geraedts P F J. Jitter Analysis and a Benchmarking Figure-of-Merit for Phase-Locked Loops. IEEE Trans Circuits Syst II, 2009, 56: 117-121 CrossRef Google Scholar

Copyright 2020 Science China Press Co., Ltd. 《中国科学》杂志社有限责任公司 版权所有

京ICP备18024590号-1       京公网安备11010102003388号