logo

SCIENCE CHINA Information Sciences, Volume 61, Issue 10: 102305(2018) https://doi.org/10.1007/s11432-018-9480-4

A novel 3D GBSM for mmWave MIMO channels

More info
  • ReceivedMar 27, 2018
  • AcceptedApr 23, 2018
  • PublishedJun 28, 2018

Abstract

In this paper, a novel three dimensional (3D) wideband geometry-based stochastic model (GBSM) for millimeter wave (mmWave) multiple-input multiple-output (MIMO) channels is proposed. A homogeneous Poisson point process (PPP) is used to generate the clusters in 3D space. The transmitter (Tx) and receiver (Rx) are surrounded by two spheres. The scatterers distributed in the two spheres are introduced to mimic the clustering effects of multipath components (MPCs) in delay and angular domains. The large-scale path loss model and line-of-sight (LOS) probability model are taken into account to make the channel model realistic. In addition, mmWave channel measurements are conducted in an indoor environment. Simulation results based on the two-sphere channel model are compared with measurement results and good agreements are achieved, which validates the proposed channel model. The results indicate that the proposed channel model has good adaptivity and can model the mmWave channel accurately.


Acknowledgment

This work was supported by National Natural Science Foundation of China (Grant No. 61771293), Taishan Scholar Program of Shandong Province, EU H2020 ITN 5G Wireless Project (Grant No. 641985), EU FP7 QUICK Project (Grant No. PIRSES-GA-2013-612652), and EU H2020 RISE TESTBED Project (Grant No. 734325).


References

[1] Rappaport T S, Sun S, Mayzus R. Millimeter wave mobile communications for 5G cellular: it will work. IEEE Access, 2013, 1: 335-349 CrossRef Google Scholar

[2] Wang C X, Haider F, Gao X. Cellular architecture and key technologies for 5G wireless communication networks. IEEE Commun Mag, 2014, 52: 122-130 CrossRef Google Scholar

[3] Boccardi F, Heath R W, Lozano A. Five disruptive technology directions for 5G. IEEE Commun Mag, 2014, 52: 74-80 CrossRef Google Scholar

[4] Wang C X, Wu S B, Bai L. Recent advances and future challenges for massive MIMO channel measurements and models. Sci China Inf Sci, 2016, 59: 021301 CrossRef Google Scholar

[5] Ge X, Tu S, Mao G. 5G Ultra-Dense Cellular Networks. IEEE Wirel Commun, 2016, 23: 72-79 CrossRef Google Scholar

[6] Feng R, Huang J, Sun J. A novel 3D frequency domain SAGE algorithm with applications to parameter estimation in mmWave massive MIMO indoor channels. Sci China Inf Sci, 2017, 60: 080305 CrossRef Google Scholar

[7] Yong S K. TG3c channel modeling sub-committee final report. IEEE Standard 802.15-07-0584-01-003c. 2007. Google Scholar

[8] Maltsev A. Channel models for 60 GHz WLAN systems. IEEE Standard 802.11-09/0334r8. 2010. Google Scholar

[9] Maltsev A. Channel models for IEEE 802.11ay. IEEE Standard 802.11-15/1150r9. 2016. Google Scholar

[10] Saleh A A M, Valenzuela R A. A statistical model for indoor multipath propagation. IEEE J Sel Areas Commun, 1987, 5: 128-137 CrossRef Google Scholar

[11] Spencer Q H, Jeffs B D, Jensen M A. Modeling the statistical time and angle of arrival characteristics of an indoor multipath channel. IEEE J Sel Areas Commun, 2000, 18: 347-360 CrossRef Google Scholar

[12] Maltsev A, Pudeyev A, Karls I, et al. Quasi-deterministic approach to mmWave channel modeling in a non-stationary environment. In: Proceedings of IEEE Globecom Workshops, Austin, 2014. 966--971. Google Scholar

[13] Weiler R J, Peter M, Keusgen W. Quasi-deterministic millimeter-wave channel models in MiWEBA. J Wirel Comum Netw, 2016, 84: 1-16 CrossRef Google Scholar

[14] Kyösti P. WINNER II Channel Models. Hoboken: John Wiley & Sons, 2008. Google Scholar

[15] Jaeckel S, Raschkowski L, Borner K. QuaDRiGa: a 3-D multi-cell channel model with time evolution for enabling virtual field trials. IEEE Trans Antenn Propag, 2014, 62: 3242-3256 CrossRef ADS Google Scholar

[16] Wu S, Wang C X, Aggoune H M. A non-stationary 3-D wideband twin-cluster model for 5G massive MIMO channels. IEEE J Sel Areas Commun, 2014, 32: 1207-1218 CrossRef Google Scholar

[17] Wu S B, Wang C X, Haas H. A non-stationary wideband channel model for massive MIMO communication systems. IEEE Trans Wirel Commun, 2015, 14: 1434-1446 CrossRef Google Scholar

[18] Wu S, Wang C X, Aggoune H M. A General 3-D Non-Stationary 5G Wireless Channel Model. IEEE Trans Commun, 2018, 66: 3065-3078 CrossRef Google Scholar

[19] Wang C X, Bian J, Sun J, et al. A survey of 5G channel measurements and models. IEEE Commun Surv Tut, 2018. in press. Google Scholar

[20] Bian J, Sun J, Wang C X. A WINNER+ based 3-D non-stationary wideband MIMO channel model. IEEE Trans Wirel Commun, 2018, 17: 1755-1767 CrossRef Google Scholar

[21] Yuan Y, Wang C X, Cheng X. Novel 3D geometry-based stochastic models for non-isotropic MIMO vehicle-to-vehicle channels. IEEE Trans Wirel Commun, 2014, 13: 298-309 CrossRef Google Scholar

[22] Yuan Y, Wang C X, He Y J. 3D wideband non-stationary geometry-based stochastic models for non-isotropic MIMO vehicle-to-vehicle channels. IEEE Trans Wirel Commun, 2015, 14: 6883-6895 CrossRef Google Scholar

[23] Ghazal A, Wang C X, Ai B. A nonstationary wideband MIMO channel model for high-mobility intelligent transportation systems. IEEE Trans Intel Transport Syst, 2014, 16: 885-897 CrossRef Google Scholar

[24] Ghazal A, Yuan Y, Wang C X. A non-stationary IMT-advanced MIMO channel model for high-mobility wireless communication systems. IEEE Trans Wirel Commun, 2017, 16: 2057-2068 CrossRef Google Scholar

[25] Liu Y, Wang C X, Lopez C F. 3D non-stationary wideband circular tunnel channel models for high-speed train wireless communication systems. Sci China Inf Sci, 2017, 60: 082304 CrossRef Google Scholar

[26] Zeng L Z, Cheng X, Wang C X, et al. A 3D geometry-based stochastic channel model for UAV-MIMO channels. In: Proceedings of IEEE Wireless Communications and Networking Conference, San Francisco, 2017. Google Scholar

[27] Jiang H, Zhang Z, Wu L. Novel 3D Irregular-Shaped Geometry-Based Channel Modeling for Semi-Ellipsoid Vehicle-to-Vehicle Scattering Environments. IEEE Wireless Commun Lett, 2018, : 1-1 CrossRef Google Scholar

[28] Gustafson C, Haneda K, Wyne S. On mm-wave multipath clustering and channel modeling. IEEE Trans Antenn Propag, 2014, 62: 1445-1455 CrossRef ADS Google Scholar

[29] Haneda K, Jarvelainen J, Karttunen A. A statistical spatio-temporal radio channel model for large indoor environments at 60 and 70 GHz. IEEE Trans Antenn Propag, 2015, 63: 2694-2704 CrossRef ADS Google Scholar

[30] Rappaport T S, MacCartney G R, Samimi M K. Wideband millimeter-wave propagation measurements and channel models for future wireless communication system design. IEEE Trans Commun, 2015, 63: 3029-3056 CrossRef Google Scholar

[31] Ko J, Cho Y J, Hur S. Millimeter-wave channel measurements and analysis for statistical spatial channel model in in-building and urban environments at 28 GHz. IEEE Trans Wirel Commun, 2017, 16: 5853-5868 CrossRef Google Scholar

[32] Bai T Y, Heath R W. Analyzing uplink SINR and rate in massive MIMO systems using stochastic geometry. IEEE Trans Commun, 2016, 64: 4592-4606 CrossRef Google Scholar

[33] Andrews J G, Bai T Y, Kulkarni M N. Modeling and analyzing millimeter wave cellular systems. IEEE Trans Commun, 2016, 65: 403-430 CrossRef Google Scholar

[34] Alkhateeb A, Nam Y H, Rahman M S. Initial beam association in millimeter wave cellular systems: analysis and design insights. IEEE Trans Wirel Commun, 2017, 16: 2807-2821 CrossRef Google Scholar

[35] MacCartney G R, Samimi M K, Rappaport T S. Omnidirectional path loss models in New York City at 28 GHz and 73 GHz. In: Proceedings of IEEE Annual International Symposium on Personal, Indoor, and Mobile Radio Communication, Washington, 2014. 227--231. Google Scholar

[36] Jarvelainen J, Nguyen S L H, Haneda K. Evaluation of millimeter-wave line-of-sight probability with point cloud data. IEEE Wirel Commun Lett, 2016, 5: 228-231 CrossRef Google Scholar

[37] Pedersen T, Steinbock G, Fleury B H. Modeling of reverberant radio channels using propagation graphs. IEEE Trans Antenn Propag, 2012, 60: 5978-5988 CrossRef ADS arXiv Google Scholar

[38] Wu X, Wang C X, Sun J. 60-GHz millimeter-wave channel measurements and modeling for indoor office environments. IEEE Trans Antenn Propag, 2017, 65: 1912-1924 CrossRef ADS Google Scholar

[39] Huang J, Wang C X, Feng R. Multi-frequency mmWave massive MIMO channel measurements and characterization for 5G wireless communication systems. IEEE J Sel Areas Commun, 2017, 35: 1591-1605 CrossRef Google Scholar

[40] Zhang B, Zhong Z, Zhou X, et al. Path loss characteristics of indoor radio channels at 15 GHz. In: Proceedings of European Conference on Antennas and Propagation, Davos, 2016. 1--5. Google Scholar

[41] Huang J, Feng R, Sun J, et al. Comparison of propagation channel characteristics for multiple millimeter wave bands. In: Proceedings of IEEE Vehicular Technology Conference, Sydney, 2017. 1--5. Google Scholar

  • Figure 1

    The proposed two-sphere mmWave channel model.

  • Figure 2

    (Color online) (a) Photo and (b) layout of the environment.

  • Figure 5

    (Color online) Simulated and measured (a) CTFs, and (b) CIRs.

  • Figure 6

    (Color online) Simulated delay and angle of (a) departure profile, and (b) arrival profile.

  • Figure 7

    (Color online) Simulated joint distribution of (a) AAoD and EAoD, (b) AAoA and EAoA.

  • Figure 8

    (Color online) Simulated and Gaussian fitted PDFs of RMS DS.

  • Figure 9

    (Color online) Simulated and Gaussian fitted PDFs of (a) RMS ADS, (b) RMS EDS, (c) RMS AAS, andprotect łinebreak (d) RMS EAS.

  • Table 1   Definitions of channel model parameters
    Parameter Definition
    $O_T(x_t,y_t,z_t)$ Coordinates of the center of the Tx sphere
    $O_R(x_r,y_r,z_r)$ Coordinates of the center of the Rx sphere
    $R_T$, $R_R$ Radius of the Tx and Rx spheres, respectively
    $D$ Distance between the centers of the Tx and Rx spheres
    $C_n(x_n,y_n,z_n)$, $n=1,\ldots,N$ Coordinates of homogeneous PPP clusters
    $D_{Tn}$ Distance between cluster $C_n$ and the center of the Tx sphere
    $D_{Rn}$ Distance between cluster $C_n$ and the center of the Rx sphere
    $H_{Tn}$, $H_{Rn}$ Height of the spherical segment related to $C_n$ at Tx and Rx side, respectively
    $S_{Tnm}(r_{tnm},\phi~_{tnm},\theta~_{tnm}),$ Spherical coordinates of scatterers at Tx side
    $n=1,\ldots,N$, $m=1,\ldots,M_n$
    $S_{Rnm}(r_{rnm},\phi~_{rnm},\theta~_{rnm}),~$ Spherical coordinates of scatterers at Rx side
    $n=1,\ldots,N$, $m=1,\ldots,M_n$
  • Table 2   Values of simulation parameters
    Parameter Value
    Room size, $L_x\times~L_y\times~L_z$ ($\rm{m}^3$) 7.2$\times$7.2$\times$3
    Tx sphere center, $O_T(x_t,y_t,z_t)$ (1, 3, 1.45)
    Rx sphere center, $O_R(x_r,y_r,z_r)$ (4, 2.2, 2.6)
    Tx sphere radius, $R_T$ (m) 0.3
    Rx sphere radius, $R_R$ (m) 0.3
    Number of Tx antenna elements, $P$ 20
    Number of Rx antenna elements, $Q$ 20
    Tx antenna element space, $\Delta~d_t$ (m) $0.5\lambda$
    Rx antenna element space, $\Delta~d_r$ (m) $0.5\lambda$
    Cluster intensity, $\mathit{\Lambda}$ 8/(7.2$\times$7.2$\times$3)
    Carrier frequency, $f_c$ (GHz) 16
    Bandwidth, $B$ (GHz) 2
    Frequency points, $K$ 401
    Path loss model parameters $d_0$=1 m, $\overline{n}$=1.8, $\sigma$=3 dB
    LOS probability model parameters $\alpha$=3, $\beta$=2, $P_{\infty}$=0.2
    Ray number scaling parameter, $\gamma$ 6
    Reflection coefficient, $\xi$ 0.8
    Angle spread scaling parameter, $\eta$ 3
  • Table 3   Simulation results for Tx1 at 16 GHz
    Parameter Value
    LOS/NLOS state LOS
    Number of clusters 7
    Number of rays in each cluster [12,~10,~15,~7,~10,~13,~9]
    C1(22.5 ns, 56.3$^\circ$, 30.1$^\circ$, $-$70.5$^\circ$, 5.6$^\circ$)
    C2(21.0 ns, $-$33.2$^\circ$, $-$8.4$^\circ$, 109.5$^\circ$, 72.1$^\circ$)
    C3(19.3 ns, 10.4$^\circ$, 5.8$^\circ$, $-$123.4, 36.2$^\circ$)
    Center of clusters C4(27.7 ns, 66.6$^\circ$, 14.3$^\circ$, $-$71.7$^\circ$, 27.5$^\circ$)
    C5(31.3 ns, 2.5$^\circ$, $-$12.4$^\circ$, $-$159.0$^\circ$, 41.3$^\circ$)
    C6(21.1 ns, $-$21.5$^\circ$, $-$11.2$^\circ$, 141.8$^\circ$, 63.6$^\circ$)
    C7(16.8 ns, 82.5$^\circ$, $-$81.7$^\circ$, $-$32.2$^\circ$, 35.7$^\circ$)
    DS: 3.7 ns
    Delay and angle spreads ADS: 44.1$^\circ$, EDS: 32.7$^\circ$
    AAS: 105.7$^\circ$, EAS: 22.5$^\circ$

Copyright 2019 Science China Press Co., Ltd. 《中国科学》杂志社有限责任公司 版权所有

京ICP备18024590号-1