logo

SCIENCE CHINA Information Sciences, Volume 61, Issue 8: 080407(2018) https://doi.org/10.1007/s11432-018-9504-6

Silicon-based on-chip hybrid (de)multiplexers

More info
  • ReceivedJan 3, 2018
  • AcceptedJun 11, 2018
  • PublishedJul 6, 2018

Abstract

A review is given on the recent progress of silicon-based on-chip hybrid multiplexers, which are the key elements to enable more than one (de)multiplexing techniques simultaneously, including wavelength-division-multiplexing (WDM), polarization-division-multiplexing (PDM), and mode-division-multiplexing (MDM). This helps enhance the link capacity of optical interconnects multiplexed with many channels. The first part gives a review on the recent developed silicon-based hybrid WDM-PDM (de)multiplexers enabling WDM and PDM simultaneously, which helps achieve 2$N$ channels by introducing $N$ wavelengths and dual polarizations. The recent progress of silicon-based hybrid WDM-MDM (de)multiplexers developed is reviewed in the second part. With the hybrid WDM-MDM (de)multiplexers, one can achieve $N~\times~M$ channels by using $N$ wavelengths and $M$ guided-modes. Finally, the silicon-based hybrid MDM-PDM (de)multiplexers are presented as the key to enhance the link capacity for a single wavelength carrier.


Acknowledgment

This work was supported by National Natural Science Foundation of China (NSFC) (Grant Nos. 61725503, 61422510, 61431166001), and Zhejiang Provincial Natural Science Foundation (Grant No. Z18F050002).


References

[1] Agrell E, Karlsson M, Chraplyvy A R. Roadmap of optical communications. J Opt, 2016, 18: 063002 CrossRef ADS Google Scholar

[2] Tkach R W. Scaling optical communications for the next decade and beyond. Bell Labs Tech J, 2010, 14: 3-9 CrossRef Google Scholar

[3] Eldada L. Advances in ROADM technologies and subsystems. Proc SPIE, 2005, 5970: 611--620. Google Scholar

[4] Dong P, Chen Y K, Duan G H. Silicon photonic devices and integrated circuits. Nanophotonics, 2014, 3: 215-228 CrossRef Google Scholar

[5] Richardson D J, Fini J M, Nelson L E. Space-division multiplexing in optical fibres. Nat Photonic, 2013, 7: 354-362 CrossRef ADS arXiv Google Scholar

[6] Winzer P J. Making spatial multiplexing a reality. Nat Photonic, 2014, 8: 345-348 CrossRef ADS Google Scholar

[7] van Uden R G H, Correa R A, Lopez E A. Ultra-high-density spatial division multiplexing with a few-mode multicore fibre. Nat Photonic, 2014, 8: 865-870 CrossRef ADS Google Scholar

[8] Berdagué S, Facq P. Mode division multiplexing in optical fibers. Appl Opt, 1982, 21: 1950-1955 CrossRef ADS Google Scholar

[9] Randel S, Ryf R, Sierra A. 6$\times$56-Gb/s mode-division multiplexed transmission over 33-km few-mode fiber enabled by 6$\times$6 MIMO equalization. Opt Express, 2011, 19: 16697-16707 CrossRef ADS Google Scholar

[10] Dai D X, Bowers J E. Silicon-based on-chip multiplexing technologies and devices for Peta-bit optical interconnects. Nanophotonics, 2014, 3: 283-311 CrossRef Google Scholar

[11] Doerr C R, Taunay T F. Silicon photonics core-, wavelength-, and polarization-diversity receiver. IEEE Photonic Technol Lett, 2011, 23: 597-599 CrossRef ADS Google Scholar

[12] Dai D X, Bauters J, Bowers J E. Passive technologies for future large-scale photonic integrated circuits on silicon: polarization handling, light non-reciprocity and loss reduction. Light Sci Appl, 2012, 1: 500--505. Google Scholar

[13] Thomson D, Zilkie A, Bowers J E. Roadmap on silicon photonics. J Opt, 2016, 18: 073003 CrossRef ADS Google Scholar

[14] Soref R. The past, present, and future of silicon photonics. IEEE J Sel Top Quant Electron, 2006, 12: 1678-1687 CrossRef ADS Google Scholar

[15] Jalali B, Fathpour S. Silicon photonics. J Lightwave Technol, 2006, 24: 4600-4615 CrossRef ADS Google Scholar

[16] Kopp C, Bernabé S, Bakir B B. Silicon photonic circuits: on-CMOS integration, fiber optical coupling, and packaging. IEEE J Sel Top Quant Electron, 2011, 17: 498-509 CrossRef ADS Google Scholar

[17] Tsybeskov L, Lockwood D J, Ichikawa M. Silicon photonics: CMOS going optical [scanning the issue]. Proc IEEE, 2009, 97: 1161-1165 CrossRef Google Scholar

[18] Hochberg M, Baehr-Jones T. Towards fabless silicon photonics. Nat Photonic, 2010, 4: 492-494 CrossRef ADS Google Scholar

[19] Lim A E J, Song J F, Fang Q. Review of silicon photonics foundry efforts. IEEE J Sel Top Quant Electron, 2014, 20: 405-416 CrossRef ADS Google Scholar

[20] Streshinsky M, Ding R, Liu Y. The road to affordable, large-scale silicon photonics. Opt Photonic News, 2013, 24: 32 CrossRef Google Scholar

[21] Dumon P, Bogaerts W, Wiaux V. Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography. IEEE Photonic Technol Lett, 2004, 16: 1328-1330 CrossRef ADS Google Scholar

[22] Selvaraja S K, Jaenen P, Bogaerts W. Fabrication of photonic wire and crystal circuits in silicon-on-insulator using 193-nm optical lithography. J Lightwave Technol, 2009, 27: 4076-4083 CrossRef ADS Google Scholar

[23] Bogaerts W, Selvaraja S K, Dumon P. Silicon-on-insulator spectral filters fabricated with CMOS technology. IEEE J Sel Top Quant Electron, 2010, 16: 33-44 CrossRef ADS Google Scholar

[24] Bogaerts W, Taillaert D, Dumon P. A polarization-diversity wavelength duplexer circuit in silicon-on-insulator photonic wires. Opt Express, 2007, 15: 1567-1578 CrossRef ADS Google Scholar

[25] Pathak S, van Thourhout D, Bogaerts W. Design trade-offs for silicon-on-insulator-based AWGs for (de)multiplexer applications. Opt Lett, 2013, 38: 2961-2964 CrossRef ADS Google Scholar

[26] Pathak S, Vanslembrouck M, Dumon P. Effect of mask discretization on performance of silicon arrayed waveguide gratings. IEEE Photonic Technol Lett, 2014, 26: 718-721 CrossRef ADS Google Scholar

[27] Pathak S, Dumon P, van Thourhout D. Comparison of AWGs and echelle gratings for wavelength division multiplexing on silicon-on-insulator. IEEE Photonic J, 2014, 6: 1-9 CrossRef ADS Google Scholar

[28] Wang J, Chen S, Dai D. Silicon hybrid demultiplexer with 64 channels for wavelength/mode-division multiplexed on-chip optical interconnects. Opt Lett, 2014, 39: 6993-6996 CrossRef ADS Google Scholar

[29] Bogaerts W, de Heyn P, van Vaerenbergh T. Silicon microring resonators. Laser Photonic Rev, 2012, 6: 47-73 CrossRef ADS Google Scholar

[30] Dong P, Qian W, Liang H. Low power and compact reconfigurable multiplexing devices based on silicon microring resonators. Opt Express, 2010, 18: 9852-9858 CrossRef ADS Google Scholar

[31] Dong P, Feng N N, Feng D Z. GHz-bandwidth optical filters based on high-order silicon ring resonators. Opt Express, 2010, 18: 23784-23789 CrossRef ADS Google Scholar

[32] Little B E, Chu S T, Hryniewicz J V. F ilter synthesis for periodically coupled microring resonators. Opt Lett, 2000, 25: 344-346 CrossRef ADS Google Scholar

[33] Grover R, Van V, Ibrahim T A. Parallel-cascaded semiconductor microring resonators for high-order and wide-FSR filters. J Lightwave Technol, 2002, 20: 900-905 CrossRef ADS Google Scholar

[34] Tobing L Y M, Dumon P, Baets R. Boxlike filter response based on complementary photonic bandgaps in two-dimensional microresonator arrays. Opt Lett, 2008, 33: 2512-2514 CrossRef ADS Google Scholar

[35] Dahlem M S, Holzwarth C W, Khilo A. Reconfigurable multi-channel second-order silicon microring-resonator filterbanks for on-chip WDM systems. Opt Express, 2011, 19: 306-316 CrossRef ADS Google Scholar

[36] Luo X S, Song J F, Feng S Q. Silicon high-order coupled-microring-based electro-optical switches for on-chip optical interconnects. IEEE Photonic Technol Lett, 2012, 24: 821-823 CrossRef ADS Google Scholar

[37] Tan Y, Chen S T, Dai D X. Polarization-selective microring resonators. Opt Express, 2017, 25: 4106-4119 CrossRef ADS Google Scholar

[38] Xia F, Rooks M, Sekaric L. Ultra-compact high order ring resonator filters using submicron silicon photonic wires for on-chip optical interconnects. Opt Express, 2007, 15: 11934-11941 CrossRef ADS Google Scholar

[39] Chen P X, Chen S T, Guan X W. High-order microring resonators with bent couplers for a box-like filter response. Opt Lett, 2014, 39: 6304-6307 CrossRef ADS Google Scholar

[40] Dong P. Silicon photonic integrated circuits for wavelength-division multiplexing applications. IEEE J Sel Top Quant Electron, 2016, 22: 370-378 CrossRef ADS Google Scholar

[41] Liang T K, Tsang H K. Integrated polarization beam splitter in high index contrast silicon-on-insulator waveguides. IEEE Photonic Technol Lett, 2005, 17: 393-395 CrossRef ADS Google Scholar

[42] Pfau T, Peveling R, Hauden J. Coherent digital polarization diversity receiver for real-time polarization-multiplexed QPSK transmission at 2.8 Gb/s. IEEE Photonic Technol Lett, 2007, 19: 1988-1990 CrossRef ADS Google Scholar

[43] Wang Z C, Dai D X. Ultrasmall Si-nanowire-based polarization rotator. J Opt Soc Am B, 2008, 25: 747-753 CrossRef ADS Google Scholar

[44] Aamer M, Gutierrez A M, Brimont A. CMOS compatible silicon-on-insulator polarization rotator based on symmetry breaking of the waveguide cross section. IEEE Photonic Technol Lett, 2012, 24: 2031-2034 CrossRef ADS Google Scholar

[45] Fukuda H, Yamada K, Tsuchizawa T. Silicon photonic circuit with polarization diversity. Opt Express, 2008, 16: 4872-4880 CrossRef ADS Google Scholar

[46] Dai D X, Bowers J E. Novel ultra-short and ultra-broadband polarization beam splitter based on a bent directional coupler. Opt Express, 2011, 19: 18614-18620 CrossRef ADS Google Scholar

[47] Wang J, Liang D, Tang Y B. Realization of an ultra-short silicon polarization beam splitter with an asymmetrical bent directional coupler. Opt Lett, 2013, 38: 4-6 CrossRef ADS Google Scholar

[48] Dai D X. Silicon polarization beam splitter based on an asymmetrical evanescent coupling system with three optical waveguides. J Lightwave Technol, 2012, 30: 3281-3287 CrossRef ADS Google Scholar

[49] Lu Z Q, Wang Y, Zhang F. Wideband silicon photonic polarization beamsplitter based on point-symmetric cascaded broadband couplers. Opt Express, 2015, 23: 29413-29422 CrossRef ADS Google Scholar

[50] Dai D X, Wu H. Realization of a compact polarization splitter-rotator on silicon. Opt Lett, 2016, 41: 2346-2349 CrossRef ADS Google Scholar

[51] Xu Y, Xiao J B. Compact and high extinction ratio polarization beam splitter using subwavelength grating couplers. Opt Lett, 2016, 41: 773-776 CrossRef ADS Google Scholar

[52] Hsu C W, Chang T K, Chen J Y. 813 $\mu$m in length and CMOS compatible polarization beam splitter based on an asymmetrical directional coupler. Appl Opt, 2016, 55: 3313-3318 CrossRef ADS Google Scholar

[53] Wu H, Tan Y, Dai D X. Ultra-broadband high-performance polarizing beam splitter on silicon. Opt Express, 2017, 25: 6069-6075 CrossRef ADS Google Scholar

[54] Uematsu T, Ishizaka Y, Kawaguchi Y. Design of a compact two-mode multi/demultiplexer consisting of multimode interference waveguides and a wavelength-insensitive phase shifter for mode-division multiplexing transmission. J Lightwave Technol, 2012, 30: 2421-2426 CrossRef ADS Google Scholar

[55] Driscoll J B, Grote R R, Souhan B. Asymmetric Y-junctions in silicon waveguides for on-chip mode-division multiplexing. Opt Lett, 2013, 38: 1854-1856 CrossRef ADS Google Scholar

[56] Riesen N, Love J D. Design of mode-sorting asymmetric Y-junctions. Appl Opt, 2012, 51: 2778-2783 CrossRef ADS Google Scholar

[57] Chen W W, Wang P J, Yang J Y. Mode multi/demultiplexer based on cascaded asymmetric Y-junctions. Opt Express, 2013, 21: 25113-25119 CrossRef ADS Google Scholar

[58] Frellsen L F, Ding Y, Sigmund O. Topology optimized mode multiplexing in silicon-on-insulator photonic wire waveguides. Opt Express, 2016, 24: 16866-16873 CrossRef ADS Google Scholar

[59] Xing J, Li Z, Xiao X. Two-mode multiplexer and demultiplexer based on adiabatic couplers. Opt Lett, 2013, 38: 3468-3470 CrossRef ADS Google Scholar

[60] Sun C L, Yu Y, Chen G Y. Silicon mode multiplexer processing dual-path mode-division multiplexing signals. Opt Lett, 2016, 41: 5511-5514 CrossRef ADS Google Scholar

[61] Love J D, Vance R W C, Joblin A. Asymmetric, adiabatic multipronged planar splitters. Opt Quant Electron, 1996, 28: 353-369 CrossRef Google Scholar

[62] Dai D X, Wang S P. Asymmetric directional couplers based on silicon nanophotonic waveguides and applications. Front Optoelectron, 2016, 9: 450-465 CrossRef Google Scholar

[63] Dai D X, Wang J. Multi-channel silicon mode (de)multiplexer based on asymmetrical directional couplers for on-chip optical interconnects. IEEE Photonic Soc News, 2014, 28: 8--14. Google Scholar

[64] Guo D F, Chu T. Silicon mode (de)multiplexers with parameters optimized using shortcuts to adiabaticity. Opt Express, 2017, 25: 9160-9170 CrossRef ADS Google Scholar

[65] Pan T H, Tseng S Y. Short and robust silicon mode (de)multiplexers using shortcuts to adiabaticity. Opt Express, 2015, 23: 10405-10412 CrossRef ADS Google Scholar

[66] Greenberg M, Orenstein M. Multimode add-drop multiplexing by adiabatic linearly tapered coupling. Opt Express, 2005, 13: 9381-9387 CrossRef ADS Google Scholar

[67] Ding Y H, Xu J, Da R F. On-chip two-mode division multiplexing using tapered directional coupler-based mode multiplexer and demultiplexer. Opt Express, 2013, 21: 10376-10382 CrossRef ADS Google Scholar

[68] Qiu H Y, Yu H, Hu T. Silicon mode multi/demultiplexer based on multimode grating-assisted couplers. Opt Express, 2013, 21: 17904-17911 CrossRef ADS Google Scholar

[69] Chen S T, Shi Y C, He S L. Compact monolithically-integrated hybrid (de)multiplexer based on silicon-on-insulator nanowires for PDM-WDM systems. Opt Express, 2015, 23: 12840-12849 CrossRef ADS Google Scholar

[70] Tan Y, Wu H, Dai D X. Silicon-based hybrid (de)multiplexer for wavelength-/polarization-division-multiplexing. J Lightwave Technol, 2018, 36: 2051-2058 CrossRef ADS Google Scholar

[71] Guo T, Zhang M, Yin Y L. A laser-trimming-assist wavelength-alignment technique for silicon microdonut resonators. IEEE Photonic Technol Lett, 2017, 29: 419-422 CrossRef ADS Google Scholar

[72] Lee H S, Kiravittaya S, Kumar S. Local tuning of photonic crystal nanocavity modes by laser-assisted oxidation. Appl Phys Lett, 2009, 95: 191109 CrossRef ADS Google Scholar

[73] Schrauwen J, van Thourhout D, Baets R. Trimming of silicon ring resonator by electron beam induced compaction and strain. Opt Express, 2008, 16: 3738-3743 CrossRef ADS Google Scholar

[74] Richardson D J, Fini J M, Nelson L E. Space-division multiplexing in optical fibres. Nat Photonic, 2013, 7: 354-362 CrossRef ADS arXiv Google Scholar

[75] van Uden R G H, Correa R A, Lopez E A. Ultra-high-density spatial division multiplexing with a few-mode multicore fibre. Nat Photonic, 2014, 8: 865-870 CrossRef ADS Google Scholar

[76] Zhao N B, Li X Y, Li G F. Capacity limits of spatially multiplexed free-space communication. Nat Photonic, 2015, 9: 822-826 CrossRef ADS Google Scholar

[77] Gabrielli L H, Liu D, Johnson S G. On-chip transformation optics for multimode waveguide bends. Nat Commun, 2012, 3: 1217 CrossRef PubMed ADS Google Scholar

[78] Dai D X, Mao M. Mode converter based on an inverse taper for multimode silicon nanophotonic integrated circuits. Opt Express, 2015, 23: 28376-28388 CrossRef ADS Google Scholar

[79] Driscoll J B, Chen C P, Grote R R. A 60 Gb/s MDM-WDM Si photonic link with $<$ 0.7 dB power penalty per channel. Opt Express, 2014, 22: 18543 CrossRef ADS Google Scholar

[80] Han L S, Liang S, Xu J J. Simultaneous wavelength- and mode-division (de)multiplexing for high-capacity on-chip data transmission link. IEEE Photonic J, 2016, 8: 1-10 CrossRef ADS Google Scholar

[81] Ji K, Chen H M. A hybrid multiplexer for wavelength/mode-division based on photonic crystals. Proc SPIE, 2017, 244: 102440. Google Scholar

[82] Tan Y, Wu H, Wang S P. Silicon-based hybrid demultiplexer for wavelength- and mode-division multiplexing. Opt Lett, 2018, 43: 1962-1965 CrossRef ADS Google Scholar

[83] Wang J, Chen S, Dai D. Silicon hybrid demultiplexer with 64 channels for wavelength/mode-division multiplexed on-chip optical interconnects. Opt Lett, 2014, 39: 6993-6996 CrossRef ADS Google Scholar

[84] Dai D X, Wang J, Chen S T. Monolithically integrated 64-channel silicon hybrid demultiplexer enabling simultaneous wavelength- and mode-division-multiplexing. Laser Photonic Rev, 2015, 9: 339-344 CrossRef ADS Google Scholar

[85] Luo L W, Ophir N, Chen C P. WDM-compatible mode-division multiplexing on a silicon chip. Nat Commun, 2014, 5: 3069 CrossRef PubMed ADS Google Scholar

[86] Yang Y D, Li Y, Huang Y Z. Silicon nitride three-mode division multiplexing and wavelength-division multiplexing using asymmetrical directional couplers and microring resonators. Opt Express, 2014, 22: 22172-22183 CrossRef ADS Google Scholar

[87] Wang S P, Wu H, Tsang H K. Monolithically integrated reconfigurable add-drop multiplexer for mode-division-multiplexing systems. Opt Lett, 2016, 41: 5298-5301 CrossRef ADS Google Scholar

[88] Wang S P, Feng X L, Gao S M. On-chip reconfigurable optical add-drop multiplexer for hybrid wavelength/mode-division-multiplexing systems. Opt Lett, 2017, 42: 2802-2805 CrossRef ADS Google Scholar

[89] Wang S P, Wu H, Zhang M. A 32-channel hybrid wavelength-/mode-division (de)multiplexer on silicon. IEEE Photonic Technol Lett, 2018, 30: 1194-1197 CrossRef Google Scholar

[90] Dai D X, Wang J, Shi Y C. Silicon mode (de)multiplexer enabling high capacity photonic networks-on-chip with a single-wavelength-carrier light. Opt Lett, 2013, 38: 1422-1424 CrossRef ADS Google Scholar

[91] Wang J, He S L, Dai D X. On-chip silicon 8-channel hybrid (de)multiplexer enabling simultaneous mode- and polarization-division-multiplexing. Laser Photonic Rev, 2014, 8: 18-22 CrossRef ADS Google Scholar

[92] Wang J, Chen P X, Chen S T. Improved 8-channel silicon mode demultiplexer with grating polarizers. Opt Express, 2014, 22: 12799-12807 CrossRef ADS Google Scholar

[93] Soldano L B, Pennings E C M. Optical multi-mode interference devices based on self-imaging: principles and applications. J Lightwave Technol, 1995, 13: 615-627 CrossRef ADS Google Scholar

[94] Chen S T, Shi Y C, He S L. Compact eight-channel thermally reconfigurable optical add/drop multiplexers on silicon. IEEE Photonic Technol Lett, 2016, 28: 1874-1877 CrossRef ADS Google Scholar

[95] Dai D X, Li C L, Wang S P. 10-channel mode (de)multiplexer with dual polarizations. Laser Photonic Rev, 2017, 12: 1700109 CrossRef ADS Google Scholar

  • Figure 1

    (Color online) Hybrid (de)multiplexing technologies combining more than one techniques.

  • Figure 2

    (Color online) The hybrid WDM-PDM (de)multiplexer consisting of a bi-directional AWG and a polarization diversity circuit. (a) Microscopic image of the fabricated device; (b) measured spectral responses [69]@Copyright 2015 OSA.

  • Figure 3

    (Color online) A 16-channel hybrid PDM-WDM (de)multiplexer. (a) Microscopic image. Measured spectral responses for all the channels of (b) TE- and (c) TM-polarizations [70]@Copyright 2018 IEEE.

  • Figure 4

    (Color online) Fabricated 64-channel hybrid MDM-WDM (de)multiplexer consisting of a four-channel mode (de)multiplexer and four 16-channel AWG (de)multiplexers [82]@Copyright 2014 OSA.

  • Figure 5

    (Color online) Fabricated 64-channel hybrid MDM-WDM (de)multiplexer consisting of a four-channel mode (de)multiplexer and two bi-directional AWG (de)multiplexers with 16 wavelength-channels [83]@Copyright 2015 Wiley.

  • Figure 6

    (Color online) Fabricated hybrid MDM-WDM (de)multiplexer for TM polarization [89]@Copyright 2018 IEEE.

  • Figure 7

    (Color online) Fabricated hybrid MDM-WDM (de)multiplexer for TE polarization [84]@Copyright 2018 OSA.

  • Figure 8

    (Color online) 8-channel hybrid PDM-MDM (de)multiplexer [91]@Copyright 2014 Wiley.

  • Figure 9

    (Color online) Fabricated PIC consisting of an improved 8-channel hybrid PDM-MDM (de)multiplexer [92]@Copyright 2014 OSA.

  • Figure 10

    (Color online) A 10-channel hybrid MDM-PDM (de)multiplexer based on dual-core adiabatic tapers waveguides with dual polarizations [95]@Copyright 2017 Wiley.

  • Figure 11

    (Color online) Measured transmissions at the then output ports (O$_1\sim$O$_{10}$) of the 10-channel hybrid MDM-PDM (de)multiplexer when light is launched from port (a) I$_{1}$, (b) I$_{2}$, (c) I$_{3}$, (d) I$_{4}$, (e) I$_{5}$, (f) I$_{6}$, (g) I$_{7}$, (h) I$_{8}$, (i) I$_{9}$,protect łinebreak (j) I$_{10}$ of the mode multiplexer, respectively [95]@Copyright 2017 Wiley.

Copyright 2019 Science China Press Co., Ltd. 《中国科学》杂志社有限责任公司 版权所有

京ICP备18024590号-1