logo

SCIENCE CHINA Information Sciences, Volume 61, Issue 12: 129205(2018) https://doi.org/10.1007/s11432-018-9521-8

Incremental data-driven optimization of complex systems in nonstationary environments

More info
  • ReceivedJun 16, 2018
  • AcceptedJun 29, 2018
  • PublishedNov 20, 2018

Abstract

There is no abstract available for this article.


Acknowledgment

This work was supported by National Natural Science Foundation of China (Grant Nos. 61525302, 61590922), Project of Ministry of Industry and Information Technology of China (Grant No. 20171122-6), Projects of Shenyang (Grant No. Y17-0-004), Fundamental Research Funds for the Central Universities (Grant Nos. N160801001, N161608001), and Outstanding Student Research Innovation Project of Northeastern University (Grant No. N170806003).


Supplement

Appendix A.


References

[1] Yang C, Ding J. Constrained dynamic multi-objective evolutionary optimization for operational indices of beneficiation process. J Intell Manuf, 2017, 14 CrossRef Google Scholar

[2] Wang H D, Jin Y C, Jansen J O. Data-driven surrogate-assisted multiobjective evolutionary optimization of a trauma system. IEEE Trans Evol Comput, 2016, 20: 939-952 CrossRef Google Scholar

[3] Storn R, Price K. Differential evolutionary simple and efficient heuristic for global optimization over continuous spaces. J Global Optim, 1997, 11: 341-359 CrossRef Google Scholar

[4] Ditzler G, Roveri M, Alippi C. Learning in nonstationary environments: a survey. IEEE Comput Intel Mag, 2015, 10: 12-25 CrossRef Google Scholar

[5] Park J, Sandberg I W. Universal approximation using radial-basis-function networks. Neural Comput, 1991, 3: 246-257 CrossRef Google Scholar

[6] Li C H, Yang S X, Nguyen T T, et al. Benchmark Generator for CEC'2009 Competition on Dynamic Optimization. IEEE Congress on Evolutionary Computation Technical Report, 2008. Google Scholar

  •   

Copyright 2020 Science China Press Co., Ltd. 《中国科学》杂志社有限责任公司 版权所有

京ICP备18024590号-1       京公网安备11010102003388号