logo

SCIENCE CHINA Information Sciences, Volume 62, Issue 1: 012501(2019) https://doi.org/10.1007/s11432-018-9592-9

Efficient quantum state transmission via perfect quantum network coding

More info
  • ReceivedMar 4, 2018
  • AcceptedAug 7, 2018
  • PublishedNov 22, 2018

Abstract

Quantum network coding with the assistance of auxiliary resources can achieve perfect transmission of the quantum state. This paper suggests a novel perfect network coding scheme to efficiently solve the quantum $k$-pair problem, in which only a few assisting resources are introduced. Specifically, only one pair of maximally entangled state needs to be pre-shared between two intermediate nodes, and only $O(k)$ of classical information is transmitted though the network. Moreover, the classical communication used in our protocol does not cause transmission congestion, providing better adaptability to large-scale quantum $k$-pair networks.Through relevant analyses and comparisons, we demonstrate that our proposed scheme saves resources and has good application value, thereby showing its high efficiency. Furthermore, the proposed scheme achieves 1-max flow quantum communication, and the achievable rate region result is extended from its counterpart over the butterfly network.


Acknowledgment

This work was supported by National Natural Science Foundation of China (Grant Nos. 61671087, 61272514, 61170272, 61003287, 61373131), the Fok Ying Tong Education Foundation (Grant No. 131067), and the Major Science and Technology Support Program of Guizhou Province (Grant No. 20183001).


References

[1] Ahlswede R, Ning Cai R, Li S Y R. Network information flow. IEEE Trans Inform Theor, 2000, 46: 1204-1216 CrossRef Google Scholar

[2] Li S Y R, Yeung R W, Ning Cai R W. Linear network coding. IEEE Trans Inform Theor, 2003, 49: 371-381 CrossRef Google Scholar

[3] Ding L H, Wu P, Wang H, et al. Lifetime maximization routing with network coding in wireless multihop networks. Sci China Inf Sci, 2013, 56: 022303. Google Scholar

[4] Zhang C S, Ge J H, Li J, et al. Robust power allocation algorithm for analog network coding with imperfect CSI. Sci China Inf Sci, 2014, 57: 042312. Google Scholar

[5] Guo R, Zhang Z, Liu X. Existence, uniqueness, and exponential stability analysis for complex-valued memristor-based BAM neural networks with time delays. Appl Math Computation, 2017, 311: 100-117 CrossRef Google Scholar

[6] Pang Z, Liu G, Zhou D. Data-based predictive control for networked nonlinear systems with packet dropout and measurement noise. J Syst Sci Complex, 2017, 30: 1072-1083 CrossRef Google Scholar

[7] Li L, Wang Z, Li Y, et al. Hopf bifurcation analysis of a complex-valued neural network model with discrete and distributed delays. Appl Math Comput, 2018, 330: 152--169. Google Scholar

[8] Shen H, Song X, Li F, et al. Finite-time $L^{2}-L^{\infty}$ filter design for networked Markov switched singular systems: a unified method. Appl Math Comput, 2018, 321: 450--462. Google Scholar

[9] Shin W Y, Chung S Y, Lee Y H. Parallel Opportunistic Routing in Wireless Networks. IEEE Trans Inform Theor, 2013, 59: 6290-6300 CrossRef Google Scholar

[10] Bell J S. On the Einstein Podolsky Rosen paradox. Phys Physique Fizika, 1964, 1: 195-200 CrossRef Google Scholar

[11] Gisin N. Bell's inequality holds for all non-product states. Phys Lett A, 1991, 154: 201-202 CrossRef ADS Google Scholar

[12] Popescu S, Rohrlich D. Generic quantum nonlocality. Phys Lett A, 1992, 166: 293-297 CrossRef ADS Google Scholar

[13] Dong H, Zhang Y, Zhang Y, et al. Generalized bilinear differential operators, binary bell polynomials, and exact periodic wave solution of boiti-leon-manna-pempinelli equation. In: Proceedings of Abstract and Applied Analysis, Hindawi, 2014. Google Scholar

[14] Jiang T, Jiang Z, Ling S. An algebraic method for quaternion and complex least squares coneigen-problem in quantum mechanics. Appl Math Comput, 2014, 249: 222--228. Google Scholar

[15] Chaves R. Polynomial Bell Inequalities. Phys Rev Lett, 2016, 116: 010402 CrossRef PubMed ADS arXiv Google Scholar

[16] Rosset D, Branciard C, Barnea T J. Nonlinear Bell Inequalities Tailored for Quantum Networks. Phys Rev Lett, 2016, 116: 010403 CrossRef PubMed ADS arXiv Google Scholar

[17] Gisin N, Mei Q, Tavakoli A. All entangled pure quantum states violate the bilocality inequality. Phys Rev A, 2017, 96: 020304 CrossRef ADS arXiv Google Scholar

[18] Luo M X. Computationally Efficient Nonlinear Bell Inequalities for Quantum Networks. Phys Rev Lett, 2018, 120: 140402 CrossRef PubMed ADS arXiv Google Scholar

[19] Hu M J, Zhou Z Y, Hu X M, et al. Experimental sharing of nonlocality among multiple observers with one entangled pair via optimal weak measurements. 2016,. arXiv Google Scholar

[20] Hayashi M, Iwama K, Nishimura H. Quantum network coding. In: Proceedings of the 24th Annual Conference on Theoretical Aspects of Computer Science. Berlin: Springer, 2007. 610--621. Google Scholar

[21] Tang Xiahou , Zongpeng Li , Chuan Wu . A Geometric Perspective to Multiple-Unicast Network Coding. IEEE Trans Inform Theor, 2014, 60: 2884-2895 CrossRef Google Scholar

[22] Harvey N J, Kleinberg R D, Lehman A R. Comparing Network Coding with Multicommodity Flow for the k-pairs Communication Problem. MIT LCS Technical Report 964. 2004. Google Scholar

[23] Dougherty R, Zeger K. Nonreversibility and Equivalent Constructions of Multiple-Unicast Networks. IEEE Trans Inform Theor, 2006, 52: 5067-5077 CrossRef Google Scholar

[24] Curty M, Lewenstein M, Lütkenhaus N. Entanglement as a Precondition for Secure Quantum Key Distribution. Phys Rev Lett, 2004, 92: 217903 CrossRef PubMed ADS Google Scholar

[25] Ren X. Quantum correlations generation and distribution in a universal covariant quantum cloning circuit. Sci China Inf Sci, 2017, 60: 122501 CrossRef Google Scholar

[26] Bennett C H, Brassard G, Crépeau C. Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys Rev Lett, 1993, 70: 1895-1899 CrossRef PubMed ADS Google Scholar

[27] Chen X B, Su Y, Xu G. Quantum state secure transmission in network communications. Inf Sci, 2014, 276: 363-376 CrossRef Google Scholar

[28] Dou Z, Xu G, Chen X B. A secure rational quantum state sharing protocol. Sci China Inf Sci, 2018, 61: 022501 CrossRef Google Scholar

[29] Hayashi M. Prior entanglement between senders enables perfect quantum network coding with modification. Phys Rev A, 2007, 76: 040301 CrossRef ADS arXiv Google Scholar

[30] Ma S Y, Chen X B, Luo M X. Probabilistic quantum network coding of M-qudit states over the butterfly network. Optics Commun, 2010, 283: 497-501 CrossRef ADS Google Scholar

[31] Satoh T, Le Gall F, Imai H. Quantum network coding for quantum repeaters. Phys Rev A, 2012, 86: 032331 CrossRef ADS arXiv Google Scholar

[32] Satoh T, Ishizaki K, Nagayama S. Analysis of quantum network coding for realistic repeater networks. Phys Rev A, 2016, 93: 032302 CrossRef ADS arXiv Google Scholar

[33] Zhang S, Li J, Dong H J. Quantum Network Coding on Networks with Arbitrarily Distributed Hidden Channels. Commun Theor Phys, 2013, 60: 415-420 CrossRef ADS Google Scholar

[34] Mahdian M, Bayramzadeh R. Perfect K-Pair Quantum Network Coding Using Superconducting Qubits. J Supercond Nov Magn, 2015, 28: 345-348 CrossRef Google Scholar

[35] Li J, Chen X, Sun X. Quantum network coding for multi-unicast problem based on 2D and 3D cluster states. Sci China Inf Sci, 2016, 59: 042301 CrossRef Google Scholar

[36] Wang F, Luo M X, Xu G. Photonic quantum network transmission assisted by the weak cross-Kerr nonlinearity. Sci China-Phys Mech Astron, 2018, 61: 060312 CrossRef Google Scholar

[37] Shang T, Li K, Liu J. Continuous-variable quantum network coding for coherent states. Quantum Inf Process, 2017, 16: 107 CrossRef ADS Google Scholar

[38] Nguyen H V, Babar Z, Alanis D. Towards the Quantum Internet: Generalised Quantum Network Coding for Large-Scale Quantum Communication Networks. IEEE Access, 2017, 5: 17288-17308 CrossRef Google Scholar

[39] Li D D, Gao F, Qin S J. Perfect quantum multiple-unicast network coding protocol. Quantum Inf Process, 2018, 17: 13 CrossRef ADS Google Scholar

[40] Nielsen M A, Chuang I L. Quantum Computation and Quantum Information. 10th ed. New York: Cambridge University Press, 2010. Google Scholar

[41] Kobayashi H, Le Gall F, Nishimura H, et al. General scheme for perfect quantum network coding with free classical communication. In: Proceedings of the 36th International Colloquium on Automata, Languages and Programming, Greece, 2009. 622--633. Google Scholar

[42] Kobayashi H, Le Gall F, Nishimura H, et al. Constructing quantum network coding schemes from classical nonlinear protocols. In: Proceedings of the IEEE Int Symp Information Theory (ISIT), New York, 2011. 109--113. Google Scholar

[43] Li J, Chen X B, Xu G. Perfect Quantum Network Coding Independent of Classical Network Solutions. IEEE Commun Lett, 2015, 19: 115-118 CrossRef Google Scholar

[44] Yang Y, Yang J, Zhou Y. Quantum network communication: a discrete-time quantum-walk approach. Sci China Inf Sci, 2018, 61: 042501 CrossRef Google Scholar

[45] de Beaudrap N, Roetteler M. Quantum linear network coding as one-way quantum computation. 2014,. arXiv Google Scholar

[46] Kobayashi H, Le Gall F, Nishimura H, et al. Perfect quantum network communication protocol based on classical network coding. In: Proceedings of the IEEE Int Symp Information Theory, New York, 2010. 2686--2690. Google Scholar

[47] Leung D, Oppenheim J, Winter A. Quantum Network Communication-The Butterfly and Beyond. IEEE Trans Inform Theor, 2010, 56: 3478-3490 CrossRef Google Scholar

[48] Nishimura H. Quantum network coding--how can network coding be applied to quantum information? In: Proceedings of the 2013 IEEE International Symposium on Network Coding, 2013. 1--5. Google Scholar

[49] Jain A, Franceschetti M, Meyer D A. On quantum network coding. J Math Phys, 2011, 52: 032201-032201 CrossRef ADS Google Scholar

  • Figure 1

    Classical network coding (CNC) over the butterfly network.

  • Figure 2

    Quantum $k$-pair network $\mathcal{N}$ as an extension of the butterfly network. Each source node $s_{i}$ is connected to $n_{1}$ and all receivers except $t_{i}$; each sink node $t_{i}$ is connected to $n_{2}$ and all senders except $s_{i}$.

  • Table 1   Comparison results of different quantum network coding schemes (QNCSs) under butterfly network
    2*QNCSs Prior entanglementClassical communication
    Location Pair number Total amount (bits)
    Hayashi [29] Source nodes 2 10
    Ma et al. [30] Source nodes 2 13
    Satoh et al. [31,32] Neighbor nodes 7 10
    Zhang et al. [33] Side nodes 2 10
    Wang et al. [36] Intermediate nodes 1 8
    Ours Intermediate nodes 1 6
  • Table 2   Comparison results of different quantum network coding schemes (QNCSs) under the $k$-pair network $\mathcal{N}$
    2*QNCSs Prior entanglementClassical communication
    Location Pair number Total amount (bits)
    Kobayashi et al. [41] $kM|V|\lceil\log~d\rceil$
    Kobayashi et al. [42] $2|E|\lceil\log~d\rceil$
    Mahdian et al. [34] Source nodes $k$ $2(k^2+k-1)\lceil\log~d\rceil$
    Li et al. [43] $(k^2+k-1)\lceil\log~d\rceil$
    Wang et al. [36] Intermediate nodes 1 $(3k+2)\lceil\log~d\rceil$
    Ours Intermediate nodes 1 $2(k+1)\lceil\log~d\rceil$

Copyright 2020 Science China Press Co., Ltd. 《中国科学》杂志社有限责任公司 版权所有

京ICP备18024590号-1