logo

SCIENCE CHINA Information Sciences, Volume 62, Issue 9: 199103(2019) https://doi.org/10.1007/s11432-018-9607-8

Area-efficient memristor spiking neural networks and supervised learning method

More info
  • ReceivedMay 7, 2018
  • AcceptedSep 13, 2018
  • PublishedJul 30, 2019

Abstract

There is no abstract available for this article.


Acknowledgment

This work was supported by National Natural Science Foundation of China (Grant Nos. 61332003, 61832007).


Supplement

Appendixes A–C.


References

[1] Strukov D B, Snider G S, Stewart D R. The missing memristor found. Nature, 2008, 453: 80-83 CrossRef PubMed ADS Google Scholar

[2] Zhu X, Tang Y H, Wu C Q. Impact of multiplexed reading scheme on nanocrossbar memristor memory's scalability. Chin Phys B, 2014, 23: 028501 CrossRef ADS Google Scholar

[3] Zhou J, Yang X J, Wu J J, et al. A memristor-based architecture combining memory and image processing. Sci China Inf Sci, 2014, 57: 052111. Google Scholar

[4] Adam G C, Hoskins B D, Prezioso M. 3-D Memristor Crossbars for Analog and Neuromorphic Computing Applications. IEEE Trans Electron Devices, 2017, 64: 312-318 CrossRef ADS Google Scholar

[5] Wu X, Saxena V, Zhu K. A CMOS Spiking Neuron for Brain-Inspired Neural Networks With Resistive Synapses and In Situ Learning. IEEE Trans Circuits Syst II, 2015, 62: 1088-1092 CrossRef Google Scholar

[6] Maass W. Lower bounds for the computational powerof networks of spiking neurons. Neural Comput, 1997,8: 1--40. Google Scholar

[7] Bohte S M, Kok J N, La Poutré H. Error-backpropagation in temporally encoded networks of spiking neurons. Neurocomputing, 2002, 48: 17-37 CrossRef Google Scholar

[8] Zhang T L, Zeng Y, Zhao D C, et al. A plasticity-centric approach to train the non-differential spiking neural networks. In: Proceedings of the 32nd AAAI Conference on Artificial Intelligence (AAAI 2018), New Orleans, 2018. 620--627. Google Scholar

[9] Nishitani Y, Kaneko Y, Ueda M. Supervised Learning Using Spike-Timing-Dependent Plasticity of Memristive Synapses.. IEEE Trans Neural Netw Learning Syst, 2015, 26: 2999-3008 CrossRef PubMed Google Scholar

Copyright 2020 Science China Press Co., Ltd. 《中国科学》杂志社有限责任公司 版权所有

京ICP备18024590号-1       京公网安备11010102003388号