logo

SCIENCE CHINA Information Sciences, Volume 61, Issue 12: 129105(2018) https://doi.org/10.1007/s11432-018-9640-7

Deep learning for steganalysis based on filter diversity selection

More info
  • ReceivedApr 24, 2018
  • AcceptedNov 14, 2018
  • PublishedNov 20, 2018

Abstract

There is no abstract available for this article.


References

[1] Liu J, Tian Y, Han T. Stego key searching for LSB steganography on JPEG decompressed image. Sci China Inf Sci, 2016, 59: 032105 CrossRef Google Scholar

[2] Luo X, Song X, Li X. Steganalysis of HUGO steganography based on parameter recognition of syndrome-trellis-codes. Multimed Tools Appl, 2016, 75: 13557-13583 CrossRef Google Scholar

[3] Fridrich J, Kodovsky J. Rich Models for Steganalysis of Digital Images. IEEE TransInformForensic Secur, 2012, 7: 868-882 CrossRef Google Scholar

[4] Ma Y Y, Luo X Y, Li X L, et al. Selection of rich model steganalysis features based on decision rough set $\alpha$-positive region reduction. IEEE Transactions on Circuits and Systems for Video Technology, 2018, DOI 10.1109/TCSVT.2018.2799243. Google Scholar

[5] Kodovsky J, Fridrich J, Holub V. Ensemble Classifiers for Steganalysis of Digital Media. IEEE TransInformForensic Secur, 2012, 7: 432-444 CrossRef Google Scholar

[6] Xu G, Wu H Z, Shi Y Q. Structural Design of Convolutional Neural Networks for Steganalysis. IEEE Signal Process Lett, 2016, 23: 708-712 CrossRef ADS Google Scholar

[7] Xu G, Wu H Z, Shi Y Q. Ensemble of CNNs for steganalysis: an empirical study. In: Proceedings of the 4th ACM Workshop on Information Hiding and Multimedia Security, 2016. 103--107. Google Scholar

[8] Holub V, Fridrich J, Denemark T. Universal distortion function for steganography in an arbitrary domain. EURASIP J Info Security, 2014, 2014: 1 CrossRef Google Scholar

[9] Holub V, Fridrich J. Designing steganographic distortion using directional filters. In: Proceedings of IEEE International Workshop on Information Forensics and Security (WIFS), 2012. 234--239. Google Scholar

  •   
    Sel Method in [6] Ens Method in [7] SRM [3]
    S-UNIWARD 17.98 19.18 17.53 18.44 20.35
    WOW 16.92 16.23 20.59

Copyright 2019 Science China Press Co., Ltd. 《中国科学》杂志社有限责任公司 版权所有

京ICP备18024590号-1