SCIENCE CHINA Information Sciences, Volume 61, Issue 12: 129208(2018) https://doi.org/10.1007/s11432-018-9646-7

Asymptotically efficient non-truncated identification for FIR systems with binary-valued outputs

More info
  • ReceivedJun 22, 2018
  • AcceptedOct 31, 2018
  • PublishedNov 23, 2018


There is no abstract available for this article.


This work was supported by China Postdoctoral Science Foundation (Grant No. 2018M630216), National Natural Science Foundation of China (Grant Nos. 61803370, 61622309), and National Key Research and Development Program of China (Grant No. 2016YFB0901902).


Some definitions, lemmas, proofs of the theorems, and simulations are in Appendices A–D.


[1] Zhao Y, Bi W, Wang T. Iterative parameter estimate with batched binary-valued observations. Sci China Inf Sci, 2016, 59: 052201 CrossRef Google Scholar

[2] Le Yi Wang , Ji-Feng Zhang , Yin G G. System identification using binary sensors. IEEE Trans Automat Contr, 2003, 48: 1892-1907 CrossRef Google Scholar

[3] Aguero J C, Goodwin G C, Yuz J I. System identification using quantized data. In: Proceedings of the 46th IEEE Conference on Decision and Control, New Orleans, 2007. 4263--4268. Google Scholar

[4] Casini M, Garulli A, Vicino A. Time complexity and input design in worst-case identification using binary sensors. In: Proceedings of the 46th IEEE Conference on Decision and Control, New Orleans, 2007. 5528--5533. Google Scholar

[5] You K Y, Xie L H, Sun S L, et al. Multiple-level quantized innovation Kalman filter. In: Proceedings of the 17th IFAC world congress, Seoul, 2008. 1420--1425. Google Scholar

[6] Wang L Y, Yin G G. Asymptotically efficient parameter estimation using quantized output observations. Automatica, 2007, 43: 1178-1191 CrossRef Google Scholar

[7] Guo J, Wang L Y, Yin G. Asymptotically efficient identification of FIR systems with quantized observations and general quantized inputs. Automatica, 2015, 57: 113-122 CrossRef Google Scholar

[8] Zhao Y, Zhang J F, Wang L Y. Identification of Hammerstein Systems with Quantized Observations. SIAM J Control Optim, 2010, 48: 4352-4376 CrossRef Google Scholar

[9] Wang T, Zhao Y L. An identification algorithm without truncation for binary-valued output systems. In: Proceedings of the 12th World Congress on Intelligent Control and Automation, Guilin, 2016. 323--327. Google Scholar

Copyright 2020 Science China Press Co., Ltd. 《中国科学》杂志社有限责任公司 版权所有

京ICP备18024590号-1       京公网安备11010102003388号