logo

SCIENCE CHINA Information Sciences, Volume 62, Issue 9: 199203(2019) https://doi.org/10.1007/s11432-018-9677-9

Tracking control and parameter identification with quantized ARMAX systems

More info
  • ReceivedOct 17, 2018
  • AcceptedNov 26, 2018
  • PublishedJul 29, 2019

Abstract

There is no abstract available for this article.


Acknowledgment

This work was supported by National Natural Science Foundation of China (Grant Nos. 61877057, 61227902).


Supplement

Appendixes A–H.


References

[1] Chen H F, Guo L. Identification and Stochastic Adaptive Control. Boston: Birkhauser, 1991. Google Scholar

[2] Liu T F, Jiang Z P. Further results on quantized stabilization of nonlinear cascaded systems with dynamic uncertainties. Sci China Inf Sci, 2016, 59: 072202 CrossRef Google Scholar

[3] Zheng C, Li L, Wang L Y. How much information is needed in quantized nonlinear control?. Sci China Inf Sci, 2018, 61: 092205 CrossRef Google Scholar

[4] Wang L Y, Zhang J F, Yin G G. System identification using binary sensors. IEEE Trans Autom Contr, 2003, 48: 1892-1907 CrossRef Google Scholar

[5] Guo J, Zhang J F, Zhao Y L. Adaptive Tracking Control of A Class of First-Order Systems With Binary-Valued Observations and Time-Varying Thresholds. IEEE Trans Autom Contr, 2011, 56: 2991-2996 CrossRef Google Scholar

[6] Zhao Y L, Guo J, Zhang J F. Adaptive Tracking Control of Linear Systems With Binary-Valued Observations and Periodic Target. IEEE Trans Autom Contr, 2013, 58: 1293-1298 CrossRef Google Scholar

[7] Chen H F, Zhang J F. Convergence rates in stochastic adaptive tracking. Int J Control, 1989, 49: 1915-1935 CrossRef Google Scholar

[8] Fu M Y, Xie L H. The sector bound approach to quantized feedback control. IEEE Trans Autom Contr, 2005, 50: 1698-1711 CrossRef Google Scholar

[9] Chen H F, Guo L. Adaptive control via consistent estimation for deterministic systems. Int J Control, 1987, 45: 2183-2202 CrossRef Google Scholar

Copyright 2020 Science China Press Co., Ltd. 《中国科学》杂志社有限责任公司 版权所有

京ICP备18024590号-1