logo

SCIENCE CHINA Information Sciences, Volume 62, Issue 6: 062407(2019) https://doi.org/10.1007/s11432-018-9712-7

64 $\times$ 64 GM-APD array-based readout integrated circuit for 3D imaging applications

More info
  • ReceivedJul 30, 2018
  • AcceptedNov 29, 2018
  • PublishedApr 15, 2019

Abstract

Using the high sensitivity of the avalanche photodiode (APD) detector operated in the Geiger-mode (GM), an array readout integrated circuit (ROIC) comprising a two-segment time-to-digital converter (TDC) is employed for wide-dynamic time interval measurement, where a 1-bit low-segment TDC is implemented by discriminating a single-phase clock period. The proposed 64 $\times$ 64 GM-APD array ROIC fabricated using Taiwan semiconductor manufacturing company (TSMC) 0.18-$\mu~$m complementary metal oxide semiconductor (CMOS) technology can operate at a maximum frequency of 500 MHz provided by an external phase-locked loop clock. The time resolution is reduced to $<1$ ns along with a maximum range of 4 $\mu~$s; the differential non-linearity (DNL) and integral non-linearity (INL) are restricted to approximately $-$0.15 to 0.15 least significant bit (LSB) and $-$0.3 to 0.32 LSB, respectively; and the power consumption is 490 mW under a frame rate of 20 kHz. The developed ROIC is successfully used in imaging applications in two different ways.


Acknowledgment

This work was supported by Natural Key R$\&$D Program of China (Grant No. 2016YFB0400904), National Natural Science Foundation of China (Grant No. 61805036), Natural Science Foundation of Jiangsu Province (Grant No. BK20181139), and Fundamental Research for Funds for Central Universities. We also appreciate the supporting in system testing and applications from the 44th Research Institute of China Electronics Technology Group Corporation.


References

[1] Zhang J F, Jiang P, Zhang X C. Experimental research of 3232 InGaAs Gm-APD arrays laser active imaging. Infrared Laser Eng, 2016, 45: 1206006 CrossRef Google Scholar

[2] Chen S, Liu D, Zhang W. Time-of-flight laser ranging and imaging at 1550 nm using low-jitter superconducting nanowire single-photon detection system. Appl Opt, 2013, 52: 3241 CrossRef PubMed ADS arXiv Google Scholar

[3] Tobin R, Halimi A, Mccarthy A. Long-range depth profiling of camouflaged targets using single-photon detection. Opt Eng, 2017, 57: 031303 CrossRef ADS Google Scholar

[4] Gersbach M, Maruyama Y, Labonne E, et al. A parallel 32$\times$32 time-to-digital converter array fabricated in a 130 nm imaging CMOS technology. In: Proceedings of the 35th European Solid-State Circuits Conference, 2009. 196--199. Google Scholar

[5] Aug B F, Loomis A H,Young D J, et al. Three-dimensional imaging with arrays of Geiger-mode avalanche photodiodes. In: Proceedings of SPIE - The International Society for Optical Engineering, 2003. 6014: 98--109. Google Scholar

[6] Liu S, Zheng Y. A Low-Power and Highly Linear 14-bit Parallel Sampling TDC With Power Gating and DEM in 65-nm CMOS. IEEE Trans VLSI Syst, 2016, 24: 1083-1091 CrossRef Google Scholar

[7] Kwon C K, Kim H, Park J. A 0.4-mW, 4.7-ps Resolution Single-Loop TDC Using a Half-Delay Time Integrator. IEEE Trans VLSI Syst, 2016, 24: 1184-1188 CrossRef Google Scholar

[8] Zhao J H, Zhao Y Q, Ye M. High precision pixel readout circuit design for GM-APD array. InfraredLaser Eng, 2017, 46: 106007 CrossRef Google Scholar

[9] Sharroush S M, Abdalla Y S, Dessouki A A, et al. A novel low-power and high-speed dynamic CMOS logic circuit technique. In: Proceedings of Radio Science Conference, 2009. 1--8. Google Scholar

[10] Vornicu I, Carmona-Galan R, Rodriguez-Vazquez A. A CMOS 0.18 $\mu~m$ 64$\times$64 single photon image sensor with in-pixel 11b time-to-digital converter. In: Proceedings of IEEE International Semiconductor Conference, 2014. 131--134. Google Scholar

[11] Field R M, Realov S, Shepard K L. A 100 fps, Time-Correlated Single-Photon-Counting-Based Fluorescence-Lifetime Imager in 130 nm CMOS. IEEE J Solid-State Circuits, 2014, 49: 867-880 CrossRef ADS Google Scholar

[12] Richardson J, Walker R, Grant L, et al. A 32$\times$32 50ps resolution 10 bit time to digital converter array in 130nm CMOS for time correlated imaging. In: Proceedings of IEEE Custom Integrated Circuits Conference, 2009. 51: 77--80. Google Scholar

[13] Gersbach M, Maruyama Y, Trimananda R. A Time-Resolved, Low-Noise Single-Photon Image Sensor Fabricated in Deep-Submicron CMOS Technology. IEEE J Solid-State Circuits, 2012, 47: 1394-1407 CrossRef ADS Google Scholar

  • Figure 1

    (Color online) Construction of the TOF detection system based on single photon detection.

  • Figure 2

    (Color online) H- tree structure. (a) Pixel array; (b) the signal transmission path.

  • Figure 3

    (Color online) Frame timing diagram of the ROIC.

  • Figure 4

    (Color online) Circuit of the single pixel in the ROIC.

  • Figure 5

    (Color online) Chip used in the test. (a) ROIC chip; (b) PCB-level test circuit.

  • Figure 8

    Nonlinear errors of the TDC. (a) The DNL errors; (b) the INL errors.

  • Figure 9

    (Color online) 3D imaging results for different distances.

  • Figure 10

    (Color online) Application of space-debris detection. (a) Testing platform; (b) the image of space debris.

  • Table 1   Performance-comparison of different ROICs with a two-segment architecture
    Reference CMOS process Pixel Pixel pitch Architecture Binary word Frame rate
    ($\mu$m) array ($\mu$m) width (bit) (fps)
    Ref.[10] 0.18 64 $\times$ 64 64 Local shared 8+3 500
    Ref.[11] 0.13 64 $\times$ 64 Local shared 6+4 100
    Ref.[12] 0.13 32 $\times$ 32 50 Local shared 7+3 500000
    Ref.[13] 0.13 32 $\times$ 32 50 Local shared 6+4 500000
    This work 0.18 64 $\times$ 64 50 Local shared 11+1 20000
    Counting frequency Time resolution Range DNL INL Area Total power
    (MHz) (ps) (ns) (LSB) (LSB) (mm$^2$) (mW)
    280 145 270 $\pm$1 1.7 5 $\times$ 5
    1000 62.5 64 $<$4 $<$8 6 $\times$ 6 8790
    160 52 53 $\pm$0.5 2.4 4.6 $\times$ 3.8
    560 119 100 $\pm$0.4 $\pm$1.2 4.8 $\times$ 3.2
    500 1000 4090 $-$0.15 to 0.15 $-$0.3 to 0.32 4.5 $\times$ 4.3 490
  • Table 2   Parameters of the laser
    Parameter Value
    Photon wavelength 1064 nm
    Photon pulse width 10 ns
    EN frame frequency 10 kHz
    Laser average power 0–200 mW (adjustable)
    Transmitter-receiver field angle 7$^{\circ}$

Copyright 2020 Science China Press Co., Ltd. 《中国科学》杂志社有限责任公司 版权所有

京ICP备18024590号-1       京公网安备11010102003388号