logo

SCIENCE CHINA Information Sciences, Volume 64, Issue 4: 149202(2021) https://doi.org/10.1007/s11432-018-9763-7

Finite element approach to continuous potential games

More info
  • ReceivedNov 17, 2018
  • AcceptedDec 27, 2018
  • PublishedApr 14, 2020

Abstract

There is no abstract available for this article.


Acknowledgment

This work was supported by National Natural Science Foundation of China (Grant Nos. 61773371, 61733018).


References

[1] Rosenthal R W. A class of games possessing pure-strategy Nash equilibria. Int J Game Theor, 1973, 2: 65-67 CrossRef Google Scholar

[2] Monderer D, Shapley L S. Potential Games. Games Economic Behav, 1996, 14: 124-143 CrossRef Google Scholar

[3] González-Sánchez D, Hernández-Lerma O. A survey of static and dynamic potential games. Sci China Math, 2016, 59: 2075-2102 CrossRef ADS Google Scholar

[4] Cheung M W, Lahkar R. Nonatomic potential games: the continuous strategy case. Games Economic Behav, 2018, 108: 341-362 CrossRef Google Scholar

[5] Marden J R, Arslan G, Shamma J S. Cooperative control and potential games.. IEEE Trans Syst Man Cybern B, 2009, 39: 1393-1407 CrossRef PubMed Google Scholar

[6] Hino Y. An improved algorithm for detecting potential games. Int J Game Theor, 2011, 40: 199-205 CrossRef Google Scholar

[7] Cheng D. On finite potential games. Automatica, 2014, 50: 1793-1801 CrossRef Google Scholar

[8] Liu X, Zhu J. On potential equations of finite games. Automatica, 2016, 68: 245-253 CrossRef Google Scholar

[9] Wang Y, Liu T, Cheng D. From weighted potential game to weighted harmonic game. IET Control Theor Appl, 2017, 11: 2161--2169. Google Scholar

Copyright 2020 Science China Press Co., Ltd. 《中国科学》杂志社有限责任公司 版权所有

京ICP备18024590号-1       京公网安备11010102003388号