logo

SCIENCE CHINA Information Sciences, Volume 63, Issue 6: 164101(2020) https://doi.org/10.1007/s11432-018-9889-8

Detail-preserving smoke simulation using an efficient high-order numerical scheme

More info
  • ReceivedDec 7, 2018
  • AcceptedApr 1, 2019
  • PublishedAug 27, 2019

Abstract

There is no abstract available for this article.


Acknowledgment

This work was supported by National Natural Science Foundation of China (Grant Nos. 61502109, 61672502, 61402038), Natural Science Foundation of Guangdong Province (Grant Nos. 2016A030310342, 2018A030313802), National Key RD Program of China (Grant No. 2017YFB1002701), Science and Technology Planning Project of Guangdong Province (Grant Nos. 2017B010110015, 2017B010110007), Open Research Fund of Guangdong Provincial Key Laboratory of Cyber-Physical System (Grant No. 2016B030301008).


Supplement

Videos and other supplemental documents.


References

[1] Huang Z, Kavan L, Li W. Reducing numerical dissipation in smoke simulation. Graphical Model, 2015, 78: 10-25 CrossRef Google Scholar

[2] Kim B, Liu Y, Llamas I. Advections with significantly reduced dissipation and diffusion.. IEEE Trans Visual Comput Graphics, 2007, 13: 135-144 CrossRef PubMed Google Scholar

[3] Selle A, Fedkiw R, Kim B M. An Unconditionally Stable MacCormack Method. J Sci Comput, 2008, 35: 350-371 CrossRef Google Scholar

[4] Fedkiw R, Stam J, Jensen H W. Visual simulation of smoke. In: Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH 01), Los Angeles, 2001. 15--22. Google Scholar

[5] Wang Z J, Fidkowski K, Abgrall R. High-order CFD methods: current status and perspective. Int J Numer Meth Fluids, 2013, 72: 811-845 CrossRef ADS Google Scholar

[6] Takahashi T, Fujii H, Kunimatsu A. Realistic Animation of Fluid with Splash and Foam. Comput Graphics Forum, 2003, 22: 391-400 CrossRef Google Scholar

[7] Song O Y, Shin H, Ko H S. Stable but nondissipative water. ACM Trans Graph, 2005, 24: 81-97 CrossRef Google Scholar

[8] Kim D, Song O, Ko H S. A Semi-Lagrangian CIP Fluid Solver without Dimensional Splitting. Comput Graphics Forum, 2008, 27: 467-475 CrossRef Google Scholar

[9] Fukumitsu K, Yabe T, Ogata Y. A new directional-splitting CIP interpolation with high accuracy and low memory consumption. J Comput Phys, 2015, 286: 62-69 CrossRef ADS Google Scholar

  • Figure 1

    (Color online) Illustration of the proposed Taylor expansion-based CIP in 2D.

  •   

    Algorithm 1 Taylor expansion-based CIP in 2D

    Require:${[\phi~,{\partial~_x}\phi~,{\partial~_y}\phi]}$ at A, B, C, D;

    Output:${[\phi~,{\partial~_x}\phi~,{\partial~_y}\phi]}$ at P.

    Compute ${\partial~_{xy}}{\phi}$ at A, B, C, D by Eqs. 25;

    Compute ${[\phi~,{\partial~_x}\phi~]_{\rm~E}}$ from ${[\phi~,{\partial~_x}\phi~]_{\rm~A}}$ and ${[\phi~,{\partial~_x}\phi~]_{\rm~B}}$ by 1D CIP interpolation;

    Compute ${[{\partial~_y}\phi~,{\partial~_{xy}}\phi~]_{\rm~E}}$ from ${[{\partial~_y}\phi~,{\partial~_{xy}}\phi~]_{\rm~A}}$ and $[{\partial~_y}\phi~,$ ${\partial~_{xy}}\phi~]_{\rm~B}$ by 1D CIP interpolation;

    Compute ${[\phi~,{\partial~_x}\phi~]_{\rm~F}}$ from ${[\phi~,{\partial~_x}\phi~]_{\rm~D}}$ and ${[\phi~,{\partial~_x}\phi~]_{\rm~C}}$ by 1D CIP interpolation;

    Compute ${[{\partial~_y}\phi~,{\partial~_{xy}}\phi~]_{\rm~F}}$ from ${[{\partial~_y}\phi~,{\partial~_{xy}}\phi~]_{\rm~D}}$ and $[{\partial~_y}\phi,$ ${\partial~_{xy}}\phi~]_{\rm~C}$ by 1D CIP interpolation;

    Compute ${[\phi~,{\partial~_y}\phi~]_{\rm~P}}$ from ${[\phi~,{\partial~_y}\phi~]_{\rm~E}}$ and ${[\phi~,{\partial~_y}\phi~]_{\rm~F}}$ by 1D CIP interpolation;

    Compute ${[{\partial~_x}\phi~,{\partial~_{xy}}\phi~]_{\rm~P}}$ from ${[{\partial~_x}\phi~,{\partial~_{xy}}\phi~]_{\rm~E}}$ and $[{\partial~_x}\phi,$ ${\partial~_{xy}}\phi~]_{\rm~F}$ by 1D CIP interpolation.

Copyright 2020 Science China Press Co., Ltd. 《中国科学》杂志社有限责任公司 版权所有

京ICP备18024590号-1