logo

SCIENCE CHINA Information Sciences, Volume 62, Issue 12: 220404(2019) https://doi.org/10.1007/s11432-019-1474-3

Nonvolatile memristor based on heterostructure of 2D room-temperatureferroelectric $\alpha$-In$_{2}$Se$_{3}$ and WSe$_{2}$

More info
  • ReceivedJun 2, 2019
  • AcceptedJul 24, 2019
  • PublishedOct 30, 2019

Abstract

Two-dimensional (2D) ferroelectricity is considered to havesignificant potential for information storage in the future. Semiconductingferroelectrics that are stable at room temperature afford many possibilitiesfor the assembly of various high-performance heterostructures andfabricating multifuntional devices. Herein, we report the synthesis of astable van der Waals (vdW) single-crystal semiconductor $\alpha$-In$_{2}$Se$_{3}$. Piezoresponse force microscopy (PFM) measurementsdemonstrated the out-of-plane ferroelectricity in $\sim~$15 layers $\alpha$-In$_{2}$Se$_{3}$ at room temperature. Both ferroelectric domains withopposite polarization and the tested amplitude and phase curve proved thatthis semiconductor exhibits hysteresis behavior during polarization. In the$\alpha~$-In$_{2}$Se$_{3}$/WSe$_{2}$ vertical heterostructure device, theswitchable diode effect and nonvolatile memory phenomenon showed a highon/off ratio and a small switching voltage. The distinct resistance switcheswere further analyzed by band alignment of the heterostructure underdifferent polarizations by first principle calculations. Nonvolatile memorybased on vdW ferroelectric heterostructure could provide a novel platformfor developing 2D room-temperature ferroelectrics in information storage.


Acknowledgment

This work was supported by National Natural Science Foundation of China (Grant Nos. 61622406, 61571415), National Key Research and Development Program of China (Grant Nos. 2017YFA0207500, 2016YFB0700700), and Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB30000000).


References

[1] Garcia V, Fusil S, Bouzehouane K. Giant tunnel electroresistance for non-destructive readout of ferroelectric states. Nature, 2009, 460: 81-84 CrossRef PubMed ADS Google Scholar

[2] Wen Z, Li C, Wu D. Ferroelectric-field-effect-enhanced electroresistance in metal/ferroelectric/semiconductor tunnel junctions. Nat Mater, 2013, 12: 617-621 CrossRef PubMed ADS Google Scholar

[3] Xu R, Liu S, Grinberg I. Ferroelectric polarization reversal via successive ferroelastic transitions. Nat Mater, 2015, 14: 79-86 CrossRef PubMed ADS Google Scholar

[4] Ge R, Wu X, Kim M. Atomristor: Nonvolatile Resistance Switching in Atomic Sheets of Transition Metal Dichalcogenides. Nano Lett, 2018, 18: 434-441 CrossRef PubMed ADS Google Scholar

[5] Scott J F. Applications of Modern Ferroelectrics. Science, 2007, 315: 954-959 CrossRef PubMed ADS Google Scholar

[6] Morris M R, Pendlebury S R, Hong J. Effect of Internal Electric Fields on Charge Carrier Dynamics in a Ferroelectric Material for Solar Energy Conversion.. Adv Mater, 2016, 28: 7123-7128 CrossRef PubMed Google Scholar

[7] Jones A M, Yu H, Ghimire N J. Optical generation of excitonic valley coherence in monolayer WSe$_{2}$. Nat Nanotech, 2013, 8: 634-638 CrossRef PubMed ADS arXiv Google Scholar

[8] Castro Neto A H, Guinea F, Peres N M R. The electronic properties of graphene. Rev Mod Phys, 2009, 81: 109-162 CrossRef ADS arXiv Google Scholar

[9] Wang Y, Xu N, Li D. Thermal Properties of Two Dimensional Layered Materials. Adv Funct Mater, 2017, 27: 1604134 CrossRef Google Scholar

[10] Huang B, Clark G, Navarro-Moratalla E. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature, 2017, 546: 270-273 CrossRef PubMed ADS arXiv Google Scholar

[11] Si M, Su C J, Jiang C. Steep-slope hysteresis-free negative capacitance MoS$_{2}$ transistors. Nat Nanotech, 2018, 13: 24-28 CrossRef PubMed ADS arXiv Google Scholar

[12] Wang X, Zhou J, Song J. Piezoelectric Field Effect Transistor and Nanoforce Sensor Based on a Single ZnO Nanowire. Nano Lett, 2006, 6: 2768-2772 CrossRef PubMed ADS Google Scholar

[13] Tian B, Liu L, Yan M. A Robust Artificial Synapse Based on Organic Ferroelectric Polymer. Adv Electron Mater, 2019, 5: 1800600 CrossRef Google Scholar

[14] Boyn S, Grollier J, Lecerf G. Learning through ferroelectric domain dynamics in solid-state synapses. Nat Commun, 2017, 8: 14736 CrossRef PubMed ADS Google Scholar

[15] Chang K, Liu J, Lin H. Discovery of robust in-plane ferroelectricity in atomic-thick SnTe. Science, 2016, 353: 274-278 CrossRef PubMed ADS Google Scholar

[16] Si M, Liao P Y, Qiu G. Ferroelectric Field-Effect Transistors Based on MoS$_{2}$ and CuInP$_{2}$S$_{6}$ Two-Dimensional van der Waals Heterostructure. ACS Nano, 2018, 12: 6700-6705 CrossRef Google Scholar

[17] Liu F, You L, Seyler K L. Room-temperature ferroelectricity in CuInP$_{2}$S$_{6}$ ultrathin flakes. Nat Commun, 2016, 7: 12357 CrossRef PubMed ADS Google Scholar

[18] Ding W, Zhu J, Wang Z. Prediction of intrinsic two-dimensional ferroelectrics in In$_{2}$Se$_{3}$ and other III$_{2}$-VI$_{3}$ van der Waals materials. Nat Commun, 2017, 8: 14956 CrossRef PubMed ADS Google Scholar

[19] Zhou J, Zeng Q, Lv D. Controlled Synthesis of High-Quality Monolayered α-In2Se3 via Physical Vapor Deposition.. Nano Lett, 2015, 15: 6400-6405 CrossRef PubMed ADS Google Scholar

[20] Tao X, Gu Y. Crystalline-Crystalline Phase Transformation in Two-Dimensional In2Se3Thin Layers. Nano Lett, 2013, 13: 3501-3505 CrossRef PubMed ADS Google Scholar

[21] Cui J, Wang L, Du Z. High thermoelectric performance of a defect in $\alpha~$-In$_{2}$Se$_{3}$-based solid solution upon substitution of Zn for In. J Mater Chem C, 2015, 3: 9069-9075 CrossRef Google Scholar

[22] Ho C H, Lin M H, Pan C C. Optical-memory switching and oxygen detection based on the CVT grown γ- and α-phase In2Se3. Sens Actuat B-Chem, 2015, 209: 811-819 CrossRef Google Scholar

[23] Cui C, Hu W J, Yan X. Intercorrelated In-Plane and Out-of-Plane Ferroelectricity in Ultrathin Two-Dimensional Layered Semiconductor In2Se3. Nano Lett, 2018, 18: 1253-1258 CrossRef PubMed ADS Google Scholar

[24] Xiao J, Zhu H, Wang Y. Intrinsic Two-Dimensional Ferroelectricity with Dipole Locking. Phys Rev Lett, 2018, 120: 227601 CrossRef PubMed ADS Google Scholar

[25] Zhou Y, Wu D, Zhu Y. Out-of-plane piezoelectricity and ferroelectricity in layered $\alpha~$-In$_{2}$Se$_{3}$ nanoflakes. Nano Lett, 2017, 17: 5508-5513 CrossRef PubMed ADS arXiv Google Scholar

[26] Wan S, Li Y, Li W. Room-temperature ferroelectricity and a switchable diode effect in two-dimensional $\alpha$-In$_{2}$Se$_{3}$ thin layers. Nanoscale, 2018, 10: 14885-14892 CrossRef PubMed Google Scholar

[27] Lewandowska R, Bacewicz R, Filipowicz J. Raman scattering in α-In2Se3 crystals. Mater Res Bull, 2001, 36: 2577-2583 CrossRef Google Scholar

[28] Tian B B, Wang J L, Fusil S. Tunnel electroresistance through organic ferroelectrics. Nat Commun, 2016, 7: 11502 CrossRef PubMed ADS Google Scholar

  • Figure 1

    (Color online) Basic structure and characterization of ferroelectric $\alpha~$-In$_{2}$Se$_{3}$. (a) Atomic structure of layered $\alpha~$-In$_{2}$Se$_{3}$ crystals; (b) Raman spectra of $\sim~$10 nm $\alpha~$-In$_{2}$Se$_{3}$ nanosheet; (c) high-resolution TEM image of exfoliated In$_{2}$Se$_{3}$; (d) SAED patterns of the $\alpha~$-In$_{2}$Se$_{3}$ nanoflake corresponding to (c).

  • Figure 2

    (Color online) PFM investigation of as-grown $\alpha $-In$_{2}$Se$_{3}$ on a Pt/Si substrate. (a) AFM image of typical thin flakes with thicknesses between 5 and 70 nm. (b) Corresponding PFM phase image. Polarization reversal under external electrical field. (c) On-field PFM amplitude and PFM phase hysteresis loops on a 20 nm thick flake. (d) Corresponding PFM phase image of a $\sim~$15 layer In$_{2}$Se$_{3}$ nanosheet, two rectangular strip domains are first written with $-$4 V on the sample, then the middle square domain is written with +5V. The clear phase change proves that the ferroelectric domain can be flipped by the applied voltage.

  • Figure 3

    (Color online) (a) Optical and AFM images of the $\alpha $-In$_{2}$Se$_{3}$/WSe$_{2}$ vertical heterostructure device; (b) schematic diagram of the corresponding device; (c), (d) $I$-$V$ curves for a ferroelectric memorizer with switchable rectifying behavior.

  • Figure 4

    (Color online) (a) $I$-$V$ curves measured under high DC bias, showing hysteresis characteristics. The calculated band alignment of the $\alpha~$-In$_{2}$Se$_{3}$/WSe$_{2}$ heterostructure after being polarized up (b) and polarized down (c), respectively.

Copyright 2019 Science China Press Co., Ltd. 《中国科学》杂志社有限责任公司 版权所有

京ICP备18024590号-1