logo

SCIENCE CHINA Information Sciences, Volume 63, Issue 8: 189301(2020) https://doi.org/10.1007/s11432-019-2652-6

A new SSVEP-based BCI utilizing frequency and space to encode visual targets

More info
  • ReceivedJul 17, 2019
  • AcceptedAug 30, 2019
  • PublishedApr 15, 2020

Abstract

There is no abstract available for this article.


References

[1] Zhang Y S, Xu P, Liu T J. Multiple Frequencies Sequential Coding for SSVEP-Based Brain-Computer Interface. PLoS ONE, 2012, 7: e29519 CrossRef PubMed ADS Google Scholar

[2] Kimura Y, Tanaka T, Higashi H. SSVEP-based brain-computer interfaces using FSK-modulated visual stimuli.. IEEE Trans Biomed Eng, 2013, 60: 2831-2838 CrossRef PubMed Google Scholar

[3] Chen X G, Wang Y J, Nakanishi M. High-speed spelling with a noninvasive brain-computer interface. Proc Natl Acad Sci USA, 2015, 112: E6058-E6067 CrossRef PubMed ADS Google Scholar

[4] Maye A, Zhang D, Engel A K. Utilizing Retinotopic Mapping for a Multi-Target SSVEP BCI With a Single Flicker Frequency.. IEEE Trans Neural Syst Rehabil Eng, 2017, 25: 1026-1036 CrossRef PubMed Google Scholar

[5] Brainard D H. The Psychophysics Toolbox. Spatial Vis, 1997, 10: 433-436 CrossRef Google Scholar

[6] Oostenveld R, Praamstra P. The five percent electrode system for high-resolution EEG and ERP measurements. Clin NeuroPhysiol, 2001, 112: 713-719 CrossRef Google Scholar

  • Figure 1

    (Color online) (a) The stimulation encoded by frequency and space; (b) the decoding method based on CCA and QDA; (c) the decoding accuracy of 16 visual targets, where the trial length is 5 s; (d) comparisons of BCI systems and decoding methods versus diverse trial lengths, where SF represents the joint spatial features and CC represents the correlation coefficients.

Copyright 2020 Science China Press Co., Ltd. 《中国科学》杂志社有限责任公司 版权所有

京ICP备18024590号-1       京公网安备11010102003388号